Download Free Role Of Potassium In Abiotic Stress Book in PDF and EPUB Free Download. You can read online Role Of Potassium In Abiotic Stress and write the review.

This book on potassium in abiotic stress tolerance deals with the ongoing trend in increasing abiotic stresses and interlinked issues food security. As mineral nutrient potassium holds an important place in agriculture and is involved in various physiological and biochemical processes. It takes part in protein synthesis, carbohydrate metabolism, enzyme activation, cation-anion balance, osmoregulation, water movement, energy transfer, and regulates stomata and photosynthesis. Potassium plays an important role as abiotic stress buster. This book will deal with potassium relevance to plant functions and adaptations, range of its biological functions, role of potassium in abiotic stress tolerance, analyses of mechanisms responsible for perception and signal transduction of potassium under abiotic stress, critical evaluation of and cross-talks on nutrients and phytohormones signaling pathways under optimal and stressful conditions, and interaction of potassium with other nutrients for abiotic stress tolerance. This book will be of interest to teachers, researchers, scientists working on abiotic stresses. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, and environmental sciences. National and international agricultural scientists, policy makers will also find this to be a useful read.
Potassium (K+) is an essential mineral macronutrient abundantly present in the cytosol which, unlike other macronutrients, is not metabolized and does not integrate into macromolecules. Compared to animal cells, K+ is more abundantly present in plant cells. Overall performance of the plant, and operation of metabolic machinery depends upon intracellular K+ homeostasis (K+ uptake and efflux) via K+ channels and transporters acting as mediators of cellular responses during plant development. Unlike animals, plants lack sodium/K+ exchangers; plant cells have developed unique transport systems for K+ accumulation and release. In Arabidopsis thaliana, 71 K+ channels and transporters have been identified and categorized into six families. Plant adaptive responses to several abiotic and biotic stresses are mediated by regulation of intracellular K+ homeostasis. In this report, we highlight the role of K+ in abiotic and biotic stresses, features of channels and transporters responsible for its homeostasis along with its evolutionary relationship, perception and sensing mechanisms, and K+ deficiency triggering different signaling cascades. Overall, this book covers the role of K+ in plants would be significantly helpful to research, academic community as well as students to understand the one of the major attributes of plant biology.
A guide to the chemical agents that protect plants from various environmental stressors Protective Chemical Agents in the Amelioration of Plant Abiotic Stress offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses. Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book: Explores the efficacy of various chemical agents to eliminate abiotic stress Offers a groundbreaking look at the topic and reviews the most recent advances in the field Includes information from noted authorities on the subject Promises to benefit agriculture under stress conditions at the ground level Written for researchers, academicians, and scientists, Protective Chemical Agents in the Amelioration of Plant Abiotic Stress details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations.
This book discusses many aspects of plant-nutrient-induced abiotic stress tolerance. It consists of 22 informative chapters on the basic role of plant nutrients and the latest research advances in the field of plant nutrients in abiotic stress tolerance as well as their practical applications. Today, plant nutrients are not only considered as food for plants, but also as regulators of numerous physiological processes including stress tolerance. They also interact with a number of biological molecules and signaling cascades. Although research work and review articles on the role of plant nutrients in abiotic stress tolerance have been published in a range of journals, annual reviews and book chapters, to date there has been no comprehensive book on this topic. As such, this timely book is a valuable resource for a wide audience, including plant scientists, agronomists, soil scientists, botanists, molecular biologists and environmental scientists.
This book provides a valuable insight into how the area of plant adaptation to abiotic stresses has progressed through the application of the new technologies. The book consists of eight chapters written by outstanding scientists across the world, who carry out research at the cutting edge of their disciplines. The topics, addressed in up-to-date specific chapters, include effects and responses of plants to stresses caused by such factors as: 1) high temperature, 2) low temperature (chilling and freezing), 3) salt, 4) drought, 5) flooding, 6) heavy metals, 7) elevated carbon dioxide, 8) ozone.
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. - Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses - Provides practical insights into a wide range of management and crop improvement practices - Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology
Plant nutrition; The soil as a plant nutrient medium; Nutrient uptake and assimilation; Plant water relationships; Plant growth and crop production; Fertilizer application; Nitrogen; Sulphur; Phosphorus; Potassium; Calcium; Magnesium; Iron; Manganese; Zinc; Copper; Molybdenum; Boron; Further elements of importance; Elements with more toxic effects.
Over the past decade, our understanding of plant adaptation to environmental stress has grown considerably. This book focuses on stress caused by the inanimate components of the environment associated with climatic, edaphic and physiographic factors that substantially limit plant growth and survival. Categorically these are abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition. Another stress, herbicides, is covered in this book to highlight how plants are impacted by abiotic stress originating from anthropogenic sources. The book also addresses the high degree to which plant responses to quite diverse forms of environmental stress are interconnected, describing the ways in which the plant utilizes and integrates many common signals and subsequent pathways to cope with less favorable conditions. The book is directed at researchers and professionals in plant physiology, cell biology and molecular biology, in both the academic and industrial sectors.