Download Free Rogue Waves 2000 29 30 November 2000 Book in PDF and EPUB Free Download. You can read online Rogue Waves 2000 29 30 November 2000 and write the review.

Brest, 29 au 29 novembre 2000. C'est aujourd'hui une certitude que certaines vagues outrepassent en hauteur et en cambrure les prédictions fondées sur les modèles courants. L'amélioration de la compréhension des raisons, des mécanismes, et des circonstances de leur apparition se doit donc d'être une priorité de recherche. Le colloque Rogue Waves 2000 a rassemblé à Brest nombre des scientifiques et ingénieurs actifs sur le sujet, qui y ont trouvé l'occasion de confronter et discuter leurs avancées les plus récentes en termes de définition, de statistiques, de modélisation et de prédiction de ces vagues anormales. Mots-clés : vagues, extrêmes, non-linéarités, vagues anormales, vagues scélérates.
Depuis le colloque Rogue Waves 2000, des avancées significatives ont été réalisées dans la description et la proposition de modèles susceptibles d'améliorer notre compréhension des vagues scélérates. Les questions qui se posent maintenant concernent l'influence que ces résultats doivent avoir sur les normes et pratiques de la construction navale et offshore, et s'ils apportent des possibilités d'amélioration pour les systèmes de prévision et d'alerte. Le colloque Rogue Waves 2004 de Brest a de nouveau rassemblé de nombreux scientifiques et ingénieurs qui ont pu y confronter et discuter leurs positions sur le sujet.
Science and Engineering of Freak Waves provides a holistic and interdisciplinary view of extreme ocean waves for both scientific and engineering applications. Readers will learn the fundamental theory of extreme waves and the implications they have on coastal structures and methods of prediction through chapters that review the definitions of extreme waves, their history and other important observations. After this, the book's authors describe the theory and modeling of extreme waves that occur in various situations. Final sections provide examples of the application of extreme wave research results to various engineering designs are presented. This book provides a comprehensive overview of the current status of our understandings on freak/rogue waves, the science of extreme waves, prediction, and their engineering applications. As such, it is a must read for physical oceanographers looking for a better understanding of prediction models and the history of these waves, and engineers looking for more information on preparedness and implications for offshore structures and shipping. Presents the history of extreme wave research, including field observations, experiments, numerical modeling, data assimilation and theory Includes numerous freak wave prediction systems and explains when and how they should be used Showcases global case studies where prediction has or could have been used to increase preparedness Provides sample codes so that readers can easily apply these methods to their own science
Elements of Physical Oceanography is a derivative of the Encyclopedia of Ocean Sciences, Second Edition and serves as an important reference on current physical oceanography knowledge and expertise in one convenient and accessible source. Its selection of articles—all written by experts in their field—focuses on ocean physics, air-sea transfers, waves, mixing, ice, and the processes of transfer of properties such as heat, salinity, momentum and dissolved gases, within and into the ocean. Elements of Physical Oceanography serves as an ideal reference for topical research. References related articles in physical oceanography to facilitate further research Richly illustrated with figures and tables that aid in understanding key concepts Includes an introductory overview and then explores each topic in detail, making it useful to experts and graduate-level researchers Topical arrangement makes it the perfect desk reference
Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean.
One key uncertainty in predictions of future climate is caused by the lack of knowledge of transport processes in the air-water interface; this poses the main transfer resistance between oceans and atmosphere. This book reviews recent progress in the domains of experimental process studies as well as computer stimulation. It represents an early approach of merging insights gained in both fields and broadens our understanding of air-water gas and heat exchange.
Significant, and usually unwelcome, surprises, such as floods, financial crisis, epileptic seizures, or material rupture, are the topics of Extreme Events in Nature and Society. The book, authored by foremost experts in these fields, reveals unifying and distinguishing features of extreme events, including problems of understanding and modelling their origin, spatial and temporal extension, and potential impact. The chapters converge towards the difficult problem of anticipation: forecasting the event and proposing measures to moderate or prevent it. Extreme Events in Nature and Society will interest not only specialists, but also the general reader eager to learn how the multifaceted field of extreme events can be viewed as a coherent whole.
This unique and encyclopedic reference work describes the evolution of the physics of modern shock wave and detonation from the earlier and classical percussion. The history of this complex process is first reviewed in a general survey. Subsequently, the subject is treated in more detail and the book is richly illustrated in the form of a picture gallery. This book is ideal for everyone professionally interested in shock wave phenomena.
Europhysics journal.