Download Free Rockefeller And The Internationalization Of Mathematics Between The Two World Wars Book in PDF and EPUB Free Download. You can read online Rockefeller And The Internationalization Of Mathematics Between The Two World Wars and write the review.

Philanthropic societies funded by the Rockefeller family were prominent in the social history of the twentieth century, for their involvement in medicine and applied science. This book provides the first detailed study of their relatively brief but nonetheless influential foray into the field of mathematics.
This book addresses the function of international science through a detailed study of international congresses in genetics held from 1899-1939.
The Development of Mathematics Between the World Wars traces the transformation of scientific life within mathematical communities during the interwar period in Central and Eastern Europe, specifically in Germany, Russia, Poland, Hungary, and Czechoslovakia. Throughout the book, in-depth mathematical analyses and examples are included for the benefit of the reader.World War I heavily affected academic life. In European countries, many talented researchers and students were killed in action and scientific activities were halted to resume only in the postwar years. However, this inhibition turned out to be a catalyst for the birth of a new generation of mathematicians, for the emergence of new ideas and theories and for the surprising creation of new and outstanding scientific schools.The final four chapters are not restricted to Central and Eastern Europe and deal with the development of mathematics between World War I and World War II. After describing the general state of mathematics at the end of the 19th century and the first third of the 20th century, three case studies dealing with selected mathematical disciplines are presented (set theory, potential theory, combinatorics), in a way accessible to a broad audience of mathematicians as well as historians of mathematics.
Mathematics has for centuries been stimulated, financed and credited by military purposes. Some mathematical thoughts and mathematical technology have also been vital in war. During World War II mathematical work by the Anti-Hitler coalition was part of an aspiration to serve humanity and not help destroy it. At present, it is not an easy task to view the bellicose potentials of mathematics in a proper perspective. The book presents historical evidence and recent changes in the interaction between mathematics and the military. It discusses the new mathematically enhanced development of military technology which seems to have changed the very character of modern warfare.
For a long time, World War I has been shortchanged by the historiography of science. Until recently, World War II was usually considered as the defining event for the formation of the modern relationship between science and society. In this context, the effects of the First World War, by contrast, were often limited to the massive deaths of promising young scientists. By focusing on a few key places (Paris, Cambridge, Rome, Chicago, and others), the present book gathers studies representing a broad spectrum of positions adopted by mathematicians about the conflict, from militant pacifism to military, scientific, or ideological mobilization. The use of mathematics for war is thoroughly examined. This book suggests a new vision of the long-term influence of World War I on mathematics and mathematicians. Continuities and discontinuities in the structure and organization of the mathematical sciences are discussed, as well as their images in various milieux. Topics of research and the values with which they were defended are scrutinized. This book, in particular, proposes a more in-depth evaluation of the issue of modernity and modernization in mathematics. The issue of scientific international relations after the war is revisited by a close look at the situation in a few Allied countries (France, Britain, Italy, and the USA). The historiography has emphasized the place of Germany as the leading mathematical country before WWI and the absurdity of its postwar ostracism by the Allies. The studies presented here help explain how dramatically different prewar situations, prolonged interaction during the war, and new international postwar organizations led to attempts at redrafting models for mathematical developments.
"The 1920s witnessed the birth of a serious mathematical research community in America. Prior to this, mathematical research was dominated by scholars based in Europe-but World War I had made the importance of scientific and technological development clear to the American research community, resulting in the establishment of new scientific initiatives and infrastructure. Physics and chemistry were the beneficiaries of this renewed scientific focus, but the mathematical community also benefitted, and over time, began to flourish. Over the course of the next two decades, despite significant obstacles, this constellation of mathematical researchers, programs, and government infrastructure would become one of the strongest in the world. In this meticulously-researched book, Karen Parshall documents the uncertain, but ultimately successful, rise of American mathematics during this time. Drawing on research carried out in archives around the country and around the world, as well as on the secondary literature, she reveals how geopolitical circumstances shifted the course of international mathematics. She provides surveys of the mathematical research landscape in the 1920s, 30s, and 40s, introduces the key players and institutions in mathematics at that time, and documents the effect of the Great Depression and the second world war on the international mathematical community. The result is a comprehensive account of the shift of mathematics' "center of gravity" to the American stage"--
Although today's mathematical research community takes its international character very much for granted, this ``global nature'' is relatively recent, having evolved over a period of roughly 150 years-from the beginning of the nineteenth century to the middle of the twentieth century. During this time, the practice of mathematics changed from being centered on a collection of disparate national communities to being characterized by an international group of scholars for whom thegoal of mathematical research and cooperation transcended national boundaries. Yet, the development of an international community was far from smooth and involved obstacles such as war, political upheaval, and national rivalries. Until now, this evolution has been largely overlooked by historians andmathematicians alike. This book addresses the issue by bringing together essays by twenty experts in the history of mathematics who have investigated the genesis of today's international mathematical community. This includes not only developments within component national mathematical communities, such as the growth of societies and journals, but also more wide-ranging political, philosophical, linguistic, and pedagogical issues. The resulting volume is essential reading for anyone interestedin the history of modern mathematics. It will be of interest to mathematicians, historians of mathematics, and historians of science in general.
Knowledge matters, and states have a stake in managing its movement to protect a variety of local and national interests. The view that knowledge circulates by itself in a flat world, unimpeded by national boundaries, is a myth. The transnational movement of knowledge is a social accomplishment, requiring negotiation, accommodation, and adaptation to the specificities of local contexts. This volume of essays by historians of science and technology breaks the national framework in which histories are often written. Instead, How Knowledge Moves takes knowledge as its central object, with the goal of unraveling the relationships among people, ideas, and things that arise when they cross national borders. This specialized knowledge is located at multiple sites and moves across borders via a dazzling array of channels, embedded in heads and hands, in artifacts, and in texts. In the United States, it shapes policies for visas, export controls, and nuclear weapons proliferation; in Algeria, it enhances the production of oranges by colonial settlers; in Vietnam, it facilitates the exploitation of a river delta. In India it transforms modes of agricultural production. It implants American values in Latin America. By concentrating on the conditions that allow for knowledge movement, these essays explore travel and exchange in face-to-face encounters and show how border-crossings mobilize extensive bureaucratic technologies.
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
The contributions in this proceedings volume offer a new perspective on the mathematical ties between France and Italy, and reveal how mathematical developments in these two countries affected one another. The focus is above all on the Peninsula’s influence on French mathematicians, counterbalancing the historically predominant perception that French mathematics was a model for Italian mathematicians. In the process, the book details a subtle network of relations between the two countries, where mathematical exchanges fit into the changing and evolving framework of Italian political and academic structures. It reconsiders the issue of nationalities in all of its complexity, an aspect often neglected in research on the history of mathematics. The works in this volume are selected contributions from a conference held in Lille and Lens (France) in November 2013 on Images of Italian Mathematics in France from Risorgimento to Fascism. The authors include respected historians of mathematics, philosophers of science, historians, and specialists for Italy and intellectual relations, ensuring the book will be of great interest to their peers.