Download Free Rock Mechanics And The Design Of Structures In Rock Book in PDF and EPUB Free Download. You can read online Rock Mechanics And The Design Of Structures In Rock and write the review.

Rock Engineering and Rock Mechanics: Structures in and on Rock Masses covers the most important topics and state-of-the-art in the area of rock mechanics, with an emphasis on structures in and on rock masses. The 255 contributions (including 6 keynote lectures) from the 2014 ISRM European Rock Mechanics Symposium (EUROCK 2014, Vigo, Spain, 27-29 Ma
Engineering rock mechanics is the discipline used to design structures built in rock. These structures encompass building foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric schemes, mines, radioactive waste repositories and geothermal energy projects: in short, any structure built on or in a rock mass. Despite the variety of projects that use rock engineering, the principles remain the same. Engineering Rock Mechanics clearly and systematically explains the key principles behind rock engineering. The book covers the basic rock mechanics principles; how to study the interactions between these principles and a discussion on the fundamentals of excavation and support and the application of these in the design of surface and underground structures. Engineering Rock Mechanics is recommended as an across-the-board source of information for the benefit of anyone involved in rock mechanics and rock engineering.
This text provides an introduction for graduate students, as well as engineering geologists and geotechnical engineers. It is also relevant to those working in nuclear waste disposal and oil and gas production. The early chapters deal with fundamental mechanics and physics as they apply to rock masses. It provides an introduction to the geological processes that give rise to the nature of rock masses and control their mechanical behavior. It discusses stresses in the earth's crust and explains methods of measurement and prediction.
The book collates and sifts a vast amount of literature on the design of structures in the mining and construction industries to synthesize a comprehensive text on the subject area. The focus is on the application of theory to practice and the book is richly illustrated with worked out examples. The presentation is lucid and based on the extensive professional, teaching and research experience of the authors. The text seeks to address the key issues of design of 'engineered' structures in or on rock. The book will serve as a standard text for undergraduate courses in mining, civil engineering and engineering geology.
Dieses Buch konzentriert sich auf die Grundlagen der Felsmechanik als Basis für den sicheren und wirtschaftlichen Entwurf und Bau von Tunneln, Dämmen und Böschungen in geklüftetem und anisotropem Fels. Es ist in vier Hauptteile gegliedert: Grundlagen und Modelle Berechnungs- und Entwurfsmethoden Erkundungen, Versuche, Messung und Beobachtung Anwendungen und Fallbeispiele. Die felsmechanischen Modelle berücksichtigen den Einfluss von Trennflächen auf das Spannungs-Dehnungs-Verhalten und die Durchlässigkeit von geklüftetem Fels. Dieses Buch ist für: Bau- und Bergbauingenieure Geologen Studenten aus den entsprechenden Bereichen
Petroleum Rock Mechanics: Drilling Operations and Well Design, Second Edition, keeps petroleum and drilling engineers centrally focused on the basic fundamentals surrounding geomechanics, while also keeping them up-to-speed on the latest issues and practical problems. Updated with new chapters on operations surrounding shale oil, shale gas, and hydraulic fracturing, and with new sections on in-situ stress, drilling design of optimal mud weight, and wellbore instability analysis, this book is an ideal resource. By creating a link between theory with practical problems, this updated edition continues to provide the most recent research and fundamentals critical to today's drilling operations. - Helps readers grasp the techniques needed to analyze and solve drilling challenges, in particular wellbore instability analysis - Teaches rock mechanic fundamentals and presents new concepts surrounding sand production and hydraulic fracturing operations - Includes new case studies and sample problems to practice
Rock mechanics is a field of applied science which has become recognised as a coherent engineering discipline within the last two decades. It consists of a body of knowledge of the mechanical properties of rock, various techniques for the analysis of rock stress under some imposed perturbation, a set of established principles expressing rock mass response to load, and a logical methodology for applying these notions and techniques to real physical prob lems. Some of the areas where application of rock mechanics concepts have been demonstrated to be of industrial value include surface and subsurface construction, mining and other methods of mineral recovery, geothermal energy recovery and subsurface hazardous waste isolation. In many cases, the pressures of industrial demand for rigour and precision in project or process design have led to rapid evolution of the engineering discipline, and general improvement in its basis in both the geosciences and engineering mechanics. An intellectual commitment in some outstanding research centres to the proper development of rock mechanics has now resulted in a capacity for engineering design in rock not conceivable two decades ago. Mining engineering is an obvious candidate for application of rock mechanics principles in the design of excavations generated by mineral extrac tion. A primary concern in mining operations, either on surface or underground, is loosely termed 'ground control', i. e.
The two-volume set Rock Mechanics and Rock Engineering is concerned with the application of the principles of mechanics to physical, chemical and electro-magnetic processes in the upper-most layers of the earth and the design and construction of the rock structures associated with civil engineering and exploitation or extraction of natural resources in mining and petroleum engineering. Volume 2, Applications of Rock Mechanics – Rock Engineering, discusses the applications of rock mechanics to engineering structures in/on rock, rock excavation techniques and in-situ monitoring techniques, giving some specific examples. The dynamic aspects associated with the science of earthquakes and their effect on rock structures, and the characteristics of vibrations induced by machinery, blasting and impacts as well as measuring techniques are described. Furthermore, the degradation and maintenance processes in rock engineering are explained. Rock Mechanics and Rock Engineering is intended to be a fundamental resource for younger generations and newcomers and a reference book for experts specialized in Rock Mechanics and Rock Engineering and associated with the fields of mining, civil and petroleum engineering, engineering geology, and/or specialized in Geophysics and concerned with earthquake science and engineering.
Engineers wishing to build structures on or in rock use the discipline known as rock mechanics. This discipline emerged as a subject in its own right about thirty five years ago, and has developed rapidly ever since. However, rock mechanics is still based to a large extent on analytical techniques that were originally formulated for the mechanical design of structures made from man made materials. The single most important distinction between man-made materials and the natural material rock is that rock contains fractures, of many kinds on many scales; and because the fractures - of whatever kin- represent breaks in the mechanical continuum, they are collectively termed 'discontinuities' . An understanding of the mechanical influence of these discontinuities is essential to all rock engineers. Most of the world is made of rock, and most of the rock near the surface is fractured. The fractures dominate the rock mass geometry, deformation modulus, strength, failure behaviour, permeability, and even the local magnitudes and directions of the in situ stress field. Clearly, an understanding of the presence and mechanics of the discontinuities, both singly and in the rock mass context, is therefore of paramount importance to civil, mining and petroleum engineers. Bearing this in mind, it is surprising that until now there has been no book dedicated specifically to the subject of discontinuity analysis in rock engineering.