Download Free Rock Mass Response To Mining Activities Book in PDF and EPUB Free Download. You can read online Rock Mass Response To Mining Activities and write the review.

Mining activities may result in rock mass deterioration and instability that may lead to failure both in underground and open pit mines. Such deterioration represents a safety risk and may result in substantial financial losses. Rock mass response may lead to ground subsidence, fall of ground/caving, inundation, pillar collapse, seismic activities and slope and tailings dam instability. Each response is preceded by warning signs and precursors, which are identified in this book, with a view to providing guidelines for prediction and amelioration of damage to mining structures. Furthermore, case studies of both large scale ground deterioration leading to collapse and geotechnical mine disasters are presented. Identifying risks and monitoring geotechnical precursors and warning signs allows for safe and productive mining.
Rock mechanics is a field of applied science which has become recognised as a coherent engineering discipline within the last two decades. It consists of a body of knowledge of the mechanical properties of rock, various techniques for the analysis of rock stress under some imposed perturbation, a set of established principles expressing rock mass response to load, and a logical methodology for applying these notions and techniques to real physical prob lems. Some of the areas where application of rock mechanics concepts have been demonstrated to be of industrial value include surface and subsurface construction, mining and other methods of mineral recovery, geothermal energy recovery and subsurface hazardous waste isolation. In many cases, the pressures of industrial demand for rigour and precision in project or process design have led to rapid evolution of the engineering discipline, and general improvement in its basis in both the geosciences and engineering mechanics. An intellectual commitment in some outstanding research centres to the proper development of rock mechanics has now resulted in a capacity for engineering design in rock not conceivable two decades ago. Mining engineering is an obvious candidate for application of rock mechanics principles in the design of excavations generated by mineral extrac tion. A primary concern in mining operations, either on surface or underground, is loosely termed 'ground control', i. e.
This new edition has been completely revised to reflect the notable innovations in mining engineering and the remarkable developments in the science of rock mechanics and the practice of rock angineering taht have taken place over the last two decades. Although "Rock Mechanics for Underground Mining" addresses many of the rock mechanics issues that arise in underground mining engineering, it is not a text exclusively for mining applications. Based on extensive professional research and teaching experience, this book will provide an authoratative and comprehensive text for final year undergraduates and commencing postgraduate stydents. For profesional practitioners, not only will it be of interests to mining and geological engineers, but also to civil engineers, structural mining geologists and geophysicists as a standard work for professional reference purposes.
An Introduction to Mining Seismology describes comprehensively the modern methods and techniques used to monitor and study seismicity and rockbursts in mines. Key case histories from various worldwide mining districts clearly illustrate and skillfully emphasize the practical aspects of mining seismology. This text is intended as a handbook for geophysicists and mining and rock mechanics engineers working at mines. It will also serve as an essential reference tool for seismologists working at research institutions on local seismicity not necessarily induced by mining. - Presents a comprehensive description of seismicity induced by mining worldwide - Provides information on optimum network planning and seismic event location procedures in deep mines - Covers a broad array of topics including focal mechanism, moment tensor, and double-couple versus non-double-couple seismic events in mines - Includes data on source parameters and scaling relations for seismic events in mines
Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 129 (1989), No. 3/4
As mining operations increase in scale and mines go progressively deeper, the geotechnical input into mine design is of importance. This book covers topics in geotechnical instrumentation and monitoring, including coverage of groundwater, displacement and environmental monitoring.
The safe and economical construction of tunnels, mines, and other subterranean works depends on the correct choice of support systems to ensure that the excavations are stable. These support systems should be matched to the characterstics of the rock mass and the excavation techniques adopted. Establishing the support requirements, designing support systems and installing these correctly are essential elements in safe underground construction. This is a comprehensive and practical work which also gives access to user-friendly computer programmes which enable the investigation and design of support techniques. Details on how to obtain this software are also included in the book.
This book offers an in-depth analysis and interpretation methods applicable to mine-induced seismicity. It is based on over 40 years of experience in mine and exploration geophysics. Another unique feature of this book is the complete history of the caving process as evidenced by the recorded seismicity at the South African copper mine Palabora Lift 1. Until now, the literature has only presented theory and case studies discussing the interpretation of results, and there has been no discussion of the input-data quality or why a certain interpretation technique was applied. This book fills that gap. This book is a fascinating read, written by one of the world’s leading mine seismologists. It summarises the history and progression of mine seismology. It outlines the practical use of back analysis of data and how it can be used on a daily basis. The book explains how mine seismology can be used as an effective monitoring tool for key events as the mine progresses as well as for future caving operations.Anthony Allman MAusIMM, CP(Min), RPEQ Antcia Consulting Pty Ltd, Director, Mining Engineer The content of the book is really solid and robust and I have no doubt it is going to be considered a great contribution for the mining community.Raul Fuentes, Former Director of Master Program in Geomechanics Applied to Mining, Universidad de los Andes, Santiago, Chile This book is long overdue and helps to present some difficult concepts in a way that they can be clearly understood by non-experts in this area. Stefan has personally managed to take mine seismology from being a black-art into a useful tool to help make mines a safer and more controlled environment. Neil Hepworth C. Eng, MIMMM, Geomin Consultorio – Brazil, Consultant Mining and Geotechnics Seismic monitoring is an important tool in cave management. The information from monitoring allows a number of key production factors to be determined including cave advance rates, the approximate location of the cave back, insight into the size of the air gap and allows the tracking of broad changes in stress. These all assist in the day to day management of a safe and successful cave. Dr. Glazer’s book provides guidance on the application of microseismicity to cave management through a review of appropriate theory and more importantly illustrates its use through case histories, particularly from the Palabora block cave. The text will be a good addition for all practitioners in cave engineering and operations.Allan Moss, General Manager – Grasberg Underground Liaison, Copper Development, Rio Tinto
Underground Mining Methods presents the latest principles and techniques in use today. Reflecting the international and diverse nature of the industry, a series of mining case studies is presented covering the commodity range from iron ore to diamonds extracted by operations located in all corners of the world. Industry experts have contributed 77 chapters. This book is certain to become a standard for every practicing mining engineer and student alike. Sections include: General Mine Design Considerations, Room-and-Pillar Mining of Hard Rock/Soft Rock, Longwall Mining of Hard Rock, Shrinkage Stoping, Sublevel Stoping, Cut-and-Fill Mining, Sublevel Caving, Panel Caving, Foundations for Design, and Underground Mining Looks to the Future.
Surface and Underground Project Case Histories