Download Free Rock Engineering Book in PDF and EPUB Free Download. You can read online Rock Engineering and write the review.

Engineers wishing to build structures on or in rock use the discipline known as rock mechanics. This discipline emerged as a subject in its own right about thirty five years ago, and has developed rapidly ever since. However, rock mechanics is still based to a large extent on analytical techniques that were originally formulated for the mechanical design of structures made from man made materials. The single most important distinction between man-made materials and the natural material rock is that rock contains fractures, of many kinds on many scales; and because the fractures - of whatever kin- represent breaks in the mechanical continuum, they are collectively termed 'discontinuities' . An understanding of the mechanical influence of these discontinuities is essential to all rock engineers. Most of the world is made of rock, and most of the rock near the surface is fractured. The fractures dominate the rock mass geometry, deformation modulus, strength, failure behaviour, permeability, and even the local magnitudes and directions of the in situ stress field. Clearly, an understanding of the presence and mechanics of the discontinuities, both singly and in the rock mass context, is therefore of paramount importance to civil, mining and petroleum engineers. Bearing this in mind, it is surprising that until now there has been no book dedicated specifically to the subject of discontinuity analysis in rock engineering.
This classic handbook deals with the geotechnical problems of rock slope design. It has been written for the non-specialist mining or civil engineer, with worked examples, design charts, coverage of more detailed analytical methods, and of the collection and interpretation of geological and groundwater information and tests for the mechanical properties of rock.
More often than not, it is difficult or even impossible to obtain directly the specific rock parameters of interest using in situ methods. The procedures for measuring most rock properties are also time consuming and expensive. Engineering Properties of Rocks, Second Edition, explores the use of typical values and/or empirical correlations of similar rocks to determine the specific parameters needed. The book is based on the author's extensive experience and offers a single source of information for the evaluation of rock properties. It systematically describes the classification and characterization of intact rock, rock discontinuities, and rock masses, and presents the various indirect methods for estimating the deformability, strength, and permeability of these components as well as the in situ rock stresses. - Presents a single source for the correlations on rock properties - Saves time and resources invested on in situ testing procedures - Fully updated with current literature - Expanded coverage of rock types and geographical locations
Using an engineer′s perspective, it offers a concrete account of the basic facts and experiences regarding the behavior of different rock types in engineering construction. Details geological exploration techniques, stressing drilling and logging core samples.
The two-volume set Rock Mechanics and Rock Engineering is concerned with the application of the principles of mechanics to physical, chemical and electro-magnetic processes in the upper-most layers of the earth and the design and construction of the rock structures associated with civil engineering and exploitation or extraction of natural resources in mining and petroleum engineering. Volume 2, Applications of Rock Mechanics – Rock Engineering, discusses the applications of rock mechanics to engineering structures in/on rock, rock excavation techniques and in-situ monitoring techniques, giving some specific examples. The dynamic aspects associated with the science of earthquakes and their effect on rock structures, and the characteristics of vibrations induced by machinery, blasting and impacts as well as measuring techniques are described. Furthermore, the degradation and maintenance processes in rock engineering are explained. Rock Mechanics and Rock Engineering is intended to be a fundamental resource for younger generations and newcomers and a reference book for experts specialized in Rock Mechanics and Rock Engineering and associated with the fields of mining, civil and petroleum engineering, engineering geology, and/or specialized in Geophysics and concerned with earthquake science and engineering.
Rock Blasting and Explosives Engineering covers the practical engineering aspects of many different kinds of rock blasting. It includes a thorough analysis of the cost of the entire process of tunneling by drilling and blasting in comparison with full-face boring. Also covered are the fundamental sciences of rock mass and material strength, the thermal decomposition, burning, shock initiation, and detonation behavior of commercial and military explosives, and systems for charging explosives into drillholes. Functional descriptions of all current detonators and initiation systems are provided. The book includes chapters on flyrock, toxic fumes, the safety of explosives, and even explosives applied in metal working as a fine art. Fundamental in its approach, the text is based on the practical industrial experience of its authors. It is supported by an abundance of tables, diagrams, and figures. This combined textbook and handbook provides students, practitioners, and researchers in mining, mechanical, building construction, geological, and petroleum engineering with a source from which to gain a thorough understanding of the constructive use of explosives.
Engineering rock mechanics is the discipline used to design structures built in rock. These structures encompass building foundations, dams, slopes, shafts, tunnels, caverns, hydroelectric schemes, mines, radioactive waste repositories and geothermal energy projects: in short, any structure built on or in a rock mass. Despite the variety of projects that use rock engineering, the principles remain the same. Engineering Rock Mechanics clearly and systematically explains the key principles behind rock engineering. The book covers the basic rock mechanics principles; how to study the interactions between these principles and a discussion on the fundamentals of excavation and support and the application of these in the design of surface and underground structures. Engineering Rock Mechanics is recommended as an across-the-board source of information for the benefit of anyone involved in rock mechanics and rock engineering.
Rock falls can be a public safety issue. This book provides comprehensive information on identification of these hazards, and design and construction of protection methods.Rock Fall Engineering describes first, the theoretical background to rock fall behavior in terms of the impact and trajectory phases of rock falls, and second, how this informati
Advances in Rock-Support and Geotechnical Engineering brings together the latest research results regarding the theory of rock mechanics, its analytical methods and innovative technologies, and its applications in practical engineering. This book is divided into six sections, rock tests, rock bolting, grouted anchor, tunneling engineering, slope engineering, and mining engineering. Coverage includes fracture hinged arching process and instability characteristics of rock plates, failure modes of rock bolting, scale effects, and loading transfer mechanism of the grouted anchor. Also covered are recent innovations and applications in tunneling engineering, slope engineering, and mining engineering. This book provides innovative, practical, and rich content that can be used as a valuable reference for researchers undertaking tunneling engineering, slope engineering, mining engineering, and rock mechanics, and for onsite technical personnel and teachers and students studying the topics in related universities. - Enriches new theories on failure modes of rock plates, rock bolting mechanisms, and anchor loading transfer - Develops new methods of evaluating the stability of slope engineering and the roof stability of the mined-out areas - Includes fracture hinged arching process and instability characteristics of rock plates, failure modes of rock bolting, scale effects, and loading transfer mechanism of the grouted anchor
This book contains probabilistic analyses and reliability-based designs (RBDs) for the enhancement of Eurocode 7 (EC7) and load and resistance factor design (LRFD) methods. An intuitive perspective and efficient computational procedure for the first-order reliability method (FORM, which includes the Hasofer–Lind reliability index) is explained, together with discussions on the similarities and differences between the design point of EC7/LRFD and RBD-via-FORM. Probability-based designs with respect to the ultimate and serviceability limit states are demonstrated for soil and rock engineering, including shallow and deep foundations, earth-retaining structures, soil slopes, 2D rock slopes with discontinuities, 3D rock slopes with wedge mechanisms, and underground rock excavations. Renowned cases in soil and rock engineering are analyzed both deterministically and probabilistically, and comparisons are made with other probabilistic methods. This book is ideal for practitioners, graduate students and researchers and all who want to deepen their understanding of geotechnical RBD accounting for uncertainty and overcome some limitations and potential pitfalls of the evolving LRFD and EC7. Solutions for the book’s examples are available online and are helpful to acquire a hands-on appreciation: https://www.routledge.com/9780367631390.