Download Free Robust Pre Stack Seismic Waveform Inversion For Acoustic Elastic Isotropic And Anisotropic Media Parameters Book in PDF and EPUB Free Download. You can read online Robust Pre Stack Seismic Waveform Inversion For Acoustic Elastic Isotropic And Anisotropic Media Parameters and write the review.

Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.
Observing offset-dependent seismic reflectivity has proven to be a valuable exploration tool for the direct detection of hydrocarbons. This monograph provides a comprehensive review of reflection coefficients and their approximations in isotropic media, followed by an in-depth discussion of reflection amplitudes in anisotropic media. No prior knowledge of seismic anisotropy is assumed, and considerable effort is spent to introduce wave propagation and medium parameterizations useful for surface seismic applications in the presence of anisotropy. The first anisotropic model discussed is transverse isotropy with a vertical axis of symmetry (VTI media), typically used to describe shale sequences. Then the study of VTI reflection coefficients is extended to transverse isotropy with a horizontal axis of symmetry (HTI) - the symmetry system that describes a system of parallel vertical cracks. Analysis of the "Shuey-type" approximate HTI P-wave reflection coefficient makes it possible to devise fracture-detection algorithms based on the inversion of azimuthal differences of the P-wave AVO gradient. The monograph also presents analysis of shear- and converted-wave reflection coefficients for HTI and orthorhombic models, discusses practical aspects of applying the azimuthal AVO analysis, and mentions promising recent results.
The use of diffraction imaging to complement the seismic reflection method is rapidly gaining momentum in the oil and gas industry. As the industry moves toward exploiting smaller and more complex conventional reservoirs and extensive new unconventional resource plays, the application of the seismic diffraction method to image sub-wavelength features such as small-scale faults, fractures and stratigraphic pinchouts is expected to increase dramatically over the next few years. “Seismic Diffraction” covers seismic diffraction theory, modeling, observation, and imaging. Papers and discussion include an overview of seismic diffractions, including classic papers which introduced the potential of diffraction phenomena in seismic processing; papers on the forward modeling of seismic diffractions, with an emphasis on the theoretical principles; papers which describe techniques for diffraction mathematical modeling as well as laboratory experiments for the physical modeling of diffractions; key papers dealing with the observation of seismic diffractions, in near-surface-, reservoir-, as well as crustal studies; and key papers on diffraction imaging.
This book provides an up-to-date presentation of a broad range of contemporary problems in inverse scattering involving acoustic, elastic and electromagnetic waves. Descriptions will be given of traditional (but still in use and subject to on-going improvements) and more recent methods for identifying either: a) the homogenized material parameters of (spatially) unbounded or bounded heterogeneous media, or b) the detailed composition (spatial distribution of the material parameters) of unbounded or bounded heterogeneous media, or c) the location, shape, orientation and material characteristics of an object embedded in a wellcharacterized homogeneous, homogenized or heterogeneous unbounded or bounded medium, by inversion of reflected, transmitted or scattered spatiotemporal recorded waveforms resulting from the propagation of probe radiation within the medium.
Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.
Seismic Wave Propagation in Stratified Media presents a systematic treatment of the interaction of seismic waves with Earth structure. The theoretical development is physically based and is closely tied to the nature of the seismograms observed across a wide range of distance scales - from a few kilometres as in shallow reflection work for geophysical prospecting, to many thousands of kilometres for major earthquakes. A unified framework is presented for all classes of seismic phenomena, for both body waves and surface waves. Since its first publication in 1983 this book has been an important resource for understanding the way in which seismic waves can be understood in terms of reflection and transmission properties of Earth models, and how complete theoretical seismograms can be calculated. The methods allow the development of specific approximations that allow concentration on different seismic arrivals and hence provide a direct tie to seismic observations.
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
Introduction to shared earth modeling -- Geology -- Petrophysics -- Well logging -- Geophysics -- Fluid properties -- Measures of rock-fluid interactions -- Applications of rock-fluid interactions -- Fluid flow equations -- Fundamentals of reservoir characterization -- Modern reservoir characterization Techniques -- Well testing -- Production analysis -- Reservoir flow simulation -- Reservoir management -- Improved recovery.