Download Free Robust Lossless Image Data Hiding Book in PDF and EPUB Free Download. You can read online Robust Lossless Image Data Hiding and write the review.

Lossless Information Hiding in Images introduces many state-of-the-art lossless hiding schemes, most of which come from the authors' publications in the past five years. After reading this book, readers will be able to immediately grasp the status, the typical algorithms, and the trend of the field of lossless information hiding. Lossless information hiding is a technique that enables images to be authenticated and then restored to their original forms by removing the watermark and replacing overridden images. This book focuses on the lossless information hiding in our most popular media, images, classifying them in three categories, i.e., spatial domain based, transform domain based, and compressed domain based. Furthermore, the compressed domain based methods are classified into VQ based, BTC based, and JPEG/JPEG2000 based. - Focuses specifically on lossless information hiding for images - Covers the most common visual medium, images, and the most common compression schemes, JPEG and JPEG 2000 - Includes recent state-of-the-art techniques in the field of lossless image watermarking - Presents many lossless hiding schemes, most of which come from the authors' publications in the past five years
Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced.
This book constitutes revised selected papers from the 14th International Workshop on Digital-Forensics and Watermarking, IWDW 2015, held in Tokyo, Japan, in October 2015. The 35 papers presented in this volume were carefully reviewed and selected from 54 submissions. The contributions are organized in topical sections named: digital forensics; steganography and steganalysis; digital watermarking; reversible data hiding; and visual cryptography.
Neural Networks in Telecommunications consists of a carefully edited collection of chapters that provides an overview of a wide range of telecommunications tasks being addressed with neural networks. These tasks range from the design and control of the underlying transport network to the filtering, interpretation and manipulation of the transported media. The chapters focus on specific applications, describe specific solutions and demonstrate the benefits that neural networks can provide. By doing this, the authors demonstrate that neural networks should be another tool in the telecommunications engineer's toolbox. Neural networks offer the computational power of nonlinear techniques, while providing a natural path to efficient massively-parallel hardware implementations. In addition, the ability of neural networks to learn allows them to be used on problems where straightforward heuristic or rule-based solutions do not exist. Together these capabilities mean that neural networks offer unique solutions to problems in telecommunications. For engineers and managers in telecommunications, Neural Networks in Telecommunications provides a single point of access to the work being done by leading researchers in this field, and furnishes an in-depth description of neural network applications.
This volume includes extended and revised versions of a set of selected papers from the International Conference on Electric and Electronics (EEIC 2011) , held on June 20-22 , 2011, which is jointly organized by Nanchang University, Springer, and IEEE IAS Nanchang Chapter. The objective of EEIC 2011 Volume 1 is to provide a major interdisciplinary forum for the presentation of new approaches from Electronics and Signal Processing, to foster integration of the latest developments in scientific research. 133 related topic papers were selected into this volume. All the papers were reviewed by 2 program committee members and selected by the volume editor Prof. Wensong Hu. We hope every participant can have a good opportunity to exchange their research ideas and results and to discuss the state of the art in the areas of the Electronics and Signal Processing.
This research book presents a sample of recent advances in information hiding techniques and their applications. It includes: Image data hiding scheme based on vector quantization and image graph coloring The copyright protection system for Android platform Reversible data hiding ICA-based image and video watermarking Content-based invariant image watermarking Single bitmap block truncation coding of color images using cat swarm optimization Genetic-based wavelet packet watermarking for copyright protection Lossless text steganography in compression coding Fast and low-distortion capacity acoustic synchronized acoustic-to-acoustic steganography scheme Video watermarking with shot detection.
This book lays out all the latest research in the area of multimedia data hiding. The book introduces multimedia signal processing and information hiding techniques. It includes multimedia representation, digital watermarking fundamentals and requirements of watermarking. It moves on to cover the recent advances in multimedia signal processing, before presenting information hiding techniques including steganography, secret sharing and watermarking. The final part of this book includes practical applications of intelligent multimedia signal processing and data hiding systems.
This book presents medical image watermarking techniques and algorithms for telemedicine and other emerging applications. This book emphasizes on medical image watermarking to ensure the authenticity of transmitted medical information. It begins with an introduction of digital watermarking, important characteristics, novel applications, different watermarking attacks and standard benchmark tools. This book also covers spatial and transform domain medical image watermarking techniques and their merits and limitations. The authors have developed improved/novel watermarking techniques for telemedicine applications that offer higher robustness, better perceptual quality and increased embedding capacity and secure watermark. The suggested methods may find potential applications in the prevention of patient identity theft and health data management issues which is a growing concern in telemedicine applications. This book provides a sound platform for understanding the medical image watermarking paradigm for researchers in the field and advanced-level students. Industry professionals working in this field, as well as other emerging applications demanding robust and secure watermarking will find this book useful as a reference.
With the increasing popularization of the Internet, together with the rapid development of 3D scanning technologies and modeling tools, 3D model databases have become more and more common in fields such as biology, chemistry, archaeology and geography. People can distribute their own 3D works over the Internet, search and download 3D model data, and also carry out electronic trade over the Internet. However, some serious issues are related to this as follows: (1) How to efficiently transmit and store huge 3D model data with limited bandwidth and storage capacity; (2) How to prevent 3D works from being pirated and tampered with; (3) How to search for the desired 3D models in huge multimedia databases. This book is devoted to partially solving the above issues. Compression is useful because it helps reduce the consumption of expensive resources, such as hard disk space and transmission bandwidth. On the downside, compressed data must be decompressed to be used, and this extra processing may be detrimental to some applications. 3D polygonal mesh (with geometry, color, normal vector and texture coordinate information), as a common surface representation, is now heavily used in various multimedia applications such as computer games, animations and simulation applications. To maintain a convincing level of realism, many applications require highly detailed mesh models. However, such complex models demand broad network bandwidth and much storage capacity to transmit and store. To address these problems, 3D mesh compression is essential for reducing the size of 3D model representation.
This book has brought 24 groups of experts and active researchers around the world together in image processing and analysis, video processing and analysis, and communications related processing, to present their newest research results, exchange latest experiences and insights, and explore future directions in these important and rapidly evolving areas. It aims at increasing the synergy between academic and industry professionals working in the related field. It focuses on the state-of-the-art research in various essential areas related to emerging technologies, standards and applications on analysis, processing, computing, and communication of multimedia information. The target audience of this book is researchers and engineers as well as graduate students working in various disciplines linked to multimedia analysis, processing and communications, e.g., computer vision, pattern recognition, information technology, image processing, and artificial intelligence. The book is also meant to a broader audience including practicing professionals working in image/video applications such as image processing, video surveillance, multimedia indexing and retrieval, and so on. We hope that the researchers, engineers, students and other professionals who read this book would find it informative, useful and inspirational toward their own work in one way or another.