Download Free Robust Guidance Schemes For The Approach And Landing Phase Of A Reusable Launch Vehicle Book in PDF and EPUB Free Download. You can read online Robust Guidance Schemes For The Approach And Landing Phase Of A Reusable Launch Vehicle and write the review.

"This thesis presents a guidance scheme for the Terminal Area Energy Management (TAEM) and Approach and Landing phases of flight for the next generation of reusable launch vehicles (RLVs). The guidance scheme presented is developed in two parts, the kappa guidance section and the touchdown trajectory section."--Abstract, p. iii.
The key to opening the use of space to private enterprise and to broader public uses lies in reducing the cost of the transportation to space. More routine, affordable access to space will entail aircraft-like quick turnaround and reliable operations. Currently, the space Shuttle is the only reusable launch vehicle, and even parts of it are expendable while other parts require frequent and extensive refurbishment. NASA's highest priority new activity, the Reusable Launch Vehicle program, is directed toward developing technologies to enable a new generation of space launchers, perhaps but not necessarily with single stage to orbit capability. This book assesses whether the technology development, test and analysis programs in propulsion and materials-related technologies are properly constituted to provide the information required to support a December 1996 decision to build the X-33, a technology demonstrator vehicle; and suggest, as appropriate, necessary changes in these programs to ensure that they will support vehicle feasibility goals.
Much effort has been put into developing technologies for next generation re-usable launch vehicles. Fully re-usable launch vehicles include a booster stage that is designed to land, usually near the launch site, after it has released the upper-stage, which continues to orbit. The fuel reserve needed to turn the booster stage around will usually be minimal For this reason, once the booster stage has completed a rocket-back maneuver, it will typically be at a high altitude (exo-atmospheric) but with low kinetic energy and a steep flight path angle on re-entry. Traditional re-entry guidance is designed for vehicles with a high velocity, and shallow flight path angle, and thus these traditional approaches are not appropriate for a low energy re-entry (LOER). The current research presents a set of guidance algorithms that will successfully guide a vehicle to landing starting from LOER condition. The guidance algorithms are designed to ensure the vehicle can achieve near optimal range performance when required and also to execute a sharp pull-up maneuver that balances the load factor constraint against the need to pull-up quickly before the dynamic pressure constraint is exceeded. The guidance approach has been tested for a wide variety of vehicles and mission scenarios, including more traditional initial conditions that would occur at the end of a High Energy Re-entry (HIER) from orbit. Thus, the guidance approach we have developed can be used as a more robust version of Terminal Area Energy Management (TAEM) guidance, as well as for LOER and has been tested for a wide range of vehicles, including the Space Shuttle and vehicles with a wide variety of L/D capability. Significant development has also gone into the engineering considerations needed to implement the guidance algorithms on a real vehicle. Program execution time, application of vehicle constraints, trajectory repeatability and other factors are all addressed in order to meet this need.
The space industry plans to develop new reusable launch vehicles. The new vehicles will need advanced, new guidance and control systems. Since 1996 Draper Laboratory has been developing the next generation guidance and control for reusable launch vehicles in which guidance and control is integrated into one correlated system. Draper's research of integrated guidance and control originated with a single loop multivariable control scheme using time-invariant linear quadratic regulator theory. The research has since evolved into the use of model predictive control theory. The main focus of this thesis is the theory and design of model predictive control for entry of aerospace vehicles. The goal is to develop design criteria and guidelines explaining how to select the model predictive control parameters: prediction horizon, simulation rates, and weighting matrices. A secondary goal is to tightly couple an onboard trajectory generation algorithm with the model predictive controller to improve tracking performance and robustness. Favorable tracking is achieved through two model predictive control architectures, which are discussed. The first architecture has an inner loop stability augmentation system with model predictive control used as an outer loop. The second architecture replaces the inner and outer loops with a single model predictive controller. The two architectures demonstrate the flexibility of model predictive control to adapt to new vehicles; the model predictive control may be used to augment an existing inner loop or may be used as a stand-alone controller. The design focuses primarily on the architecture without a stability augmentation system.