Download Free Robust Dynamic Hand Gesture Recognition System With Sparse Steric Haar Like Feature Book in PDF and EPUB Free Download. You can read online Robust Dynamic Hand Gesture Recognition System With Sparse Steric Haar Like Feature and write the review.

The book is a compilation of best papers presented at International Conference on Recent Advancement in Computer and Communication (ICRAC 2017) organized by IMPLab Research and Innovation Foundation, Bhopal, India. The book covers all aspects of computers and communication techniques including pervasive computing, distributed computing, cloud computing, sensor and adhoc network, image, text and speech processing, pattern recognition and pattern analysis, digital signal processing, digital electronics, telecommunication technologies, robotics, VLSI technologies, embedded system, satellite communication, digital signal processing, and digital communication. The papers included are original research works of experts from industry, government centers and academic institutions; experienced in engineering, design and research.
Natural and human-induced changes in Earth's interior, land surface, biosphere, atmosphere, and oceans affect all aspects of life. Understanding these changes requires a range of observations acquired from land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and USGS in developing these tools, the NRC was asked to carry out a "decadal strategy" survey of Earth science and applications from space that would develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015 and beyond, and present a prioritized list of space programs, missions, and supporting activities to address these questions. This report presents a vision for the Earth science program; an analysis of the existing Earth Observing System and recommendations to help restore its capabilities; an assessment of and recommendations for new observations and missions for the next decade; an examination of and recommendations for effective application of those observations; and an analysis of how best to sustain that observation and applications system.
Giant vesicles are widely used as a model membrane system, both for basic biological systems and for their promising applications in the development of smart materials and cell mimetics, as well as in driving new technologies in synthetic biology and for the cosmetics and pharmaceutical industry. The reader is guided to use giant vesicles, from the formation of simple membrane platforms to advanced membrane and cell system models. It also includes fundamentals for understanding lipid or polymer membrane structure, properties and behavior. Every chapter includes ideas for further applications and discussions on the implications of the observed phenomena towards understanding membrane-related processes. The Giant Vesicle Book is meant to be a road companion, a trusted guide for those making their first steps in this field as well as a source of information required by experts. Key Features • A complete summary of the field, covering fundamental concepts, practical methods, core theory, and the most promising applications • A start-up package of theoretical and experimental information for newcomers in the field • Extensive protocols for establishing the required preparations and assays • Tips and instructions for carefully performing and interpreting measurements with giant vesicles or for observing them, including pitfalls • Approaches developed for investigating giant vesicles as well as brief overviews of previous studies implementing the described techniques • Handy tables with data and structures for ready reference
This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.
The thesis provides the necessary experimental and analytical tools to unambiguously observe the atomically resolved chemical reactions. A great challenge of modern science has been to directly observe atomic motions during structural transitions, and while this was first achieved through a major advance in electron source brightness, the information content was still limited and new methods for image reconstruction using femtosecond electron diffraction methods were needed. One particular challenge lay in reconciling the innumerable possible nuclear configurations with the observation of chemical reaction mechanisms that reproducibly give the same kind of chemistry for large classes of molecules. The author shows that there is a simple solution that occurs during barrier crossing in which the highly anharmonic potential at that point in nuclear rearrangements couples high- and low-frequency vibrational modes to give highly localized nuclear motions, reducing hundreds of potential degrees of freedom to just a few key modes. Specific examples are given in this thesis, including two photoinduced phase transitions in an organic system, a ring closure reaction, and two direct observations of nuclear reorganization driven by spin transitions. The emerging field of structural dynamics promises to change the way we think about the physics of chemistry and this thesis provides tools to make it happen.
This volume, the sixth of the series, represents the natural counterpart of the previous volume, Ultra structure of the Digestive Tract. Unlike the latter, however, whose contents fell entirely within the domains of gastroenterology, Ultrastructure of the Extraparietal Glands of the Digestive Tract encom passes a few cognate sciences, such as hepatology, pancreatology, and even oral biology, which are usually dealt with separately. This allows, starting from cell biology, embryology, and comparative anatomy, a comprehensive survey of organs that have much in common both structurally and functionally. The chapters of this book have been compiled by well-known experts in the field with the aim not only of reviewing and pointing out the state of the art of the subject covered, but also of giving directions for future work. Furthermore, through the integration of electron microscopy with immunocytochemistry, autoradiography, freeze fracture, maceration, enzymatic digestion, etc., and by providing superb illus trative material, the authors substantiate the pivotal role played by modern morphology in under standing human physiology and pathology. In fact, it must be stressed, that a consistent part of the tissues studied here are from human origin. We believe that this volume should be read, not only by scientists and teachers active in the field, but also by a larger audience of students and professionals interested in knowing the scientific foundations of biomedicine.
This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.
This textbook presents a special solution to underdetermined linear systems where the number of nonzero entries in the solution is very small compared to the total number of entries. This is called a sparse solution. Since underdetermined linear systems can be very different, the authors explain how to compute a sparse solution using many approaches. Sparse Solutions of Underdetermined Linear Systems and Their Applications contains 64 algorithms for finding sparse solutions of underdetermined linear systems and their applications for matrix completion, graph clustering, and phase retrieval and provides a detailed explanation of these algorithms including derivations and convergence analysis. Exercises for each chapter help readers understand the material. This textbook is appropriate for graduate students in math and applied math, computer science, statistics, data science, and engineering. Advisors and postdoctoral scholars will also find the book interesting and useful.
This book highlights recent advances in computational intelligence for signal processing, computing, imaging, artificial intelligence, and their applications. It offers support for researchers involved in designing decision support systems to promote the societal acceptance of ambient intelligence, and presents the latest research on diverse topics in intelligence technologies with the goal of advancing knowledge and applications in this rapidly evolving field. As such, it offers a valuable resource for researchers, developers and educators whose work involves recent advances and emerging technologies in computational intelligence.