Download Free Robust Discrete Optimization And Its Applications Book in PDF and EPUB Free Download. You can read online Robust Discrete Optimization And Its Applications and write the review.

This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: • It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; • It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; • It accounts for the risk averse nature of decision makers; and • It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.
This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: • It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; • It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; • It accounts for the risk averse nature of decision makers; and • It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
This book aims to demonstrate and detail the pervasive nature of Discrete Optimization. The handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It is done with an academic treatment outlining the state-of-the-art for researchers across the domains of the Computer Science, Math Programming, Applied Mathematics, Engineering, and Operations Research. The book utilizes the tools of mathematical modeling, optimization, and integer programming to solve a broad range of modern problems.
This thesis presents efficient algorithms that give optimal or near-optimal solutions for problems with non-linear objective functions that arise in discrete, continuous and robust optimization. First, we present a general framework for designing approximation schemes for combinatorial optimization problems in which the objective function is a combination of more than one function. Examples of such problems include those in which the objective function is a product or ratio of two or more linear functions, parallel machine scheduling problems with the makespan objective, robust versions of weighted multi-objective optimization problems, and assortment optimization problems with logit choice models. For many of these problems, we give the first fully polynomial time approximation scheme using our framework. Next, we present approximation schemes for optimizing a rather general class of non-linear functions of low rank over a polytope. In contrast to existing results in the literature, our approximation scheme does not require the assumption of quasi-concavity of the objective function. For the special case of minimizing a quasi-concave function of low-rank, we give an alternative algorithm which always returns a solution which is an extreme point of the polytope. This algorithm can also be used for combinatorial optimization problems where the objective is to minimize a quasi-concave function of low rank. We also give complexity-theoretic results with regards to the inapproximability of minimizing a concave function over a polytope. Finally, we consider the problem of appointment scheduling in a robust optimization framework. The appointment scheduling problem arises in many service operations, for example health care. For each job, we are given its minimum and maximum possible execution times. The objective is to find an appointment schedule for which the cost in the worst case scenario of the realization of the processing times of the jobs is minimized. We present a global balancing heuristic, which gives an easy to compute closed form optimal schedule when the underage costs of the jobs are non-decreasing. In addition, for the case where we have the flexibility of changing the order of execution of the jobs, we give simple heuristics to find a near-optimal sequence of the jobs.
This book provides a broad coverage of the recent advances in robustness analysis in decision aiding, optimization, and analytics. It offers a comprehensive illustration of the challenges that robustness raises in different operations research and management science (OR/MS) contexts and the methodologies proposed from multiple perspectives. Aside from covering recent methodological developments, this volume also features applications of robust techniques in engineering and management, thus illustrating the robustness issues raised in real-world problems and their resolution within advances in OR/MS methodologies. Robustness analysis seeks to address issues by promoting solutions, which are acceptable under a wide set of hypotheses, assumptions and estimates. In OR/MS, robustness has been mostly viewed in the context of optimization under uncertainty. Several scholars, however, have emphasized the multiple facets of robustness analysis in a broader OR/MS perspective that goes beyond the traditional framework, seeking to cover the decision support nature of OR/MS methodologies as well. As new challenges emerge in a “big-data'” era, where the information volume, speed of flow, and complexity increase rapidly, and analytics play a fundamental role for strategic and operational decision-making at a global level, robustness issues such as the ones covered in this book become more relevant than ever for providing sound decision support through more powerful analytic tools.
Researchers and practitioners in computer science, optimization, operations research and mathematics will find this book useful as it illustrates optimization models and solution methods in discrete, non-differentiable, stochastic, and nonlinear optimization. Contributions from experts in optimization are showcased in this book showcase a broad range of applications and topics detailed in this volume, including pattern and image recognition, computer vision, robust network design, and process control in nonlinear distributed systems. This book is dedicated to the 80th birthday of Ivan V. Sergienko, who is a member of the National Academy of Sciences (NAS) of Ukraine and the director of the V.M. Glushkov Institute of Cybernetics. His work has had a significant impact on several theoretical and applied aspects of discrete optimization, computational mathematics, systems analysis and mathematical modeling.
One of the most frequently occurring types of optimization problems involves decision variables which have to take integer values. From a practical point of view, such problems occur in countless areas of management, engineering, administration, etc., and include such problems as location of plants or warehouses, scheduling of aircraft, cutting raw materials to prescribed dimensions, design of computer chips, increasing reliability or capacity of networks, etc. This is the class of problems known in the professional literature as "discrete optimization" problems. While these problems are of enormous applicability, they present many challenges from a computational point of view. This volume is an update on the impressive progress achieved by mathematicians, operations researchers, and computer scientists in solving discrete optimization problems of very large sizes. The surveys in this volume present a comprehensive overview of the state of the art in discrete optimization and are written by the most prominent researchers from all over the world. This volume describes the tremendous progress in discrete optimization achieved in the last 20 years since the publication of Discrete Optimization '77, Annals of Discrete Mathematics, volumes 4 and 5, 1979 (Elsevier). It contains surveys of the state of the art written by the most prominent researchers in the field from all over the world, and covers topics like neighborhood search techniques, lift and project for mixed 0-1 programming, pseudo-Boolean optimization, scheduling and assignment problems, production planning, location, bin packing, cutting planes, vehicle routing, and applications to graph theory, mechanics, chip design, etc. Key features: • state of the art surveys • comprehensiveness • prominent authors • theoretical, computational and applied aspects. This book is a reprint of Discrete Applied Mathematics Volume 23, Numbers 1-3
Operations research often solves deterministic optimization problems based on elegantand conciserepresentationswhereall parametersarepreciselyknown. In the face of uncertainty, probability theory is the traditional tool to be appealed for, and stochastic optimization is actually a signi?cant sub-area in operations research. However, the systematic use of prescribed probability distributions so as to cope with imperfect data is partially unsatisfactory. First, going from a deterministic to a stochastic formulation, a problem may becomeintractable. Agoodexampleiswhengoingfromdeterministictostoch- tic scheduling problems like PERT. From the inception of the PERT method in the 1950’s, it was acknowledged that data concerning activity duration times is generally not perfectly known and the study of stochastic PERT was launched quite early. Even if the power of today’s computers enables the stochastic PERT to be addressed to a large extent, still its solutions often require simplifying assumptions of some kind. Another di?culty is that stochastic optimization problems produce solutions in the average. For instance, the criterion to be maximized is more often than not expected utility. This is not always a meaningful strategy. In the case when the underlying process is not repeated a lot of times, let alone being one-shot, it is not clear if this criterion is realistic, in particular if probability distributions are subjective. Expected utility was proposed as a rational criterion from ?rst principles by Savage. In his view, the subjective probability distribution was - sically an artefact useful to implement a certain ordering of solutions.