Download Free Robust And Integrated Airline Scheduling Book in PDF and EPUB Free Download. You can read online Robust And Integrated Airline Scheduling and write the review.

260 2 Crew Legalities and Crew Pairing Repair 264 3 Model and Mathematical Formulation 266 4 Solution Methodology 271 5 Computational Experiences 277 6 Conclusion 285 REFERENCES 286 10 THE USE OF OPTIMIZATION TO PERFORM AIR TRAFFIC FLOW MANAGEMENT Kenneth Lindsay, E. Andrew Boyd, George Booth, and Charles Harvey 287 1 Introduction 288 2 The Traffic Flow Management (TFM) Problem 289 3 Recent TFM Optimization Models 292 4 The Time Assignment Model (TAM) 302 5 Summary and Conclusions 307 REFERENCES 309 11 THE PROCESSES OF AIRLINE SYSTEM OPERATIONS CONTROL Seth C. Grandeau, Michael D. Clarke, and Dennis F.X. Mathaisel 312 1 Introduction 313 2 The Four Phases of Airline Schedule Development 315 The Airline Operations Control Center (OCC) 3 320 4 Analysis of Operational Problems 331 5 Areas For Improvement 352 6 Case Study: PT Garuda Indonesia Airlines 357 REFERENCES 368 12 THE COMPLEX CONFIGURATION MODEL Bruce W. Patty and Jim Diamond 370 1 Introduction 370 Problem Description 2 371 Problem Formulation 3 375 4 Model Implementation 379 ix Contents 383 5 Summary REFERENCES 383 13 INTEGRATED AIRLINE SCHEDULE PLANNING Cynthia Barnhart, Fang Lu, and Rajesh Shenoi 384 1 Introduction 385 2 Fleet Assignment and Crew Pairing Problems: Existing M- els and Algorithms 388 3 An Integrated Approximate Fleet Assignment and Crew Pa- ing Model 393 4 An Advanced Integrated Solution Approach 395 5 Case Study 396 6 Conclusions and Future Research Directions 399 REFERENCES 401 14 AIRLINE SCHEDULE PERTURBATION PROBLEM: LANDING AND TAKEOFF WITH
In this text, two planning approaches for integrated airline scheduling are presented. One follows the traditional sequential approach, and the other uses metaheuristics to offer a truly simultaneous approach to airline scheduling.
The global airline industry is a multi-stakeholder stochastic system whose performance is the outcome of complex interactions between its multiple decisions-makers under a high degree of uncertainty. Inadequate understanding of uncertainty and stakeholder preferences leads to adverse effects including airline losses, delays and disruptions. This thesis studies a set of topics in airline scheduling and air traffic control to mitigate some of these issues. The first part of the thesis focuses on building aircraft schedules that are robust against delays. We develop a robust optimization approach for building aircraft routes. The goal is to mitigate propagated delays, which are defined as the delays caused by the late arrival of aircraft from earlier flights and are the top cause of flight delays in the United States air transportation system. The key feature of our model is that it allows us to handle correlation in flight delays explicitly that existing approaches cannot handle efficiently. We propose an efficient decomposition algorithm to solve the robust model and present the results of numerical experiments, based on data from a major U.S. airline, to demonstrate its effectiveness compared to existing approaches. The second part of the thesis focuses on improving the planning of air traffic flow management (ATFM) programs by incorporating airline preferences into the decision-making process. We develop a voting mechanism to gather airline preferences of candidate ATFM designs. A unique feature of this mechanism is that the candidates are drawn from a domain with infinite cardinality described by polyhedral sets. We conduct a detailed case study based on actual schedule data at San Francisco International Airport to assess its benefits in planning of ground delay programs. Finally, we study an integrated airline network planning model which incorporates passenger choice behavior. We model passenger demand using a multinomial logit choice model and integrate it into a fleet assignment and schedule design model. To tackle the formidable computational challenge associated with solving this model, we develop a reformulation, decomposition and approximation scheme. Using data from a major U.S. airline, we prove that the proposed approach brings significant profit improvements over existing methods.
Efficient integrated/robust planning and recovery models were studied. The research focus was to integrate fleet assignment and crew scheduling, and, in addition, to provide solutions robust to real time operations. The contributions include: (1) To understand how schedule development and fleet assignment stages influence crew scheduling performance, schedule analysis methods were proposed to evaluate the crew friendliness of a schedule for a given fleet. (2) To meet the computational challenges of crew scheduling in integrated planning, a duty flow model was proposed which can efficiently find suboptimal legal pairing solutions. (3) A new robust crew scheduling method based on spoke purity was proposed. Computational results indicated that with little or no extra cost, a more robust crew pairing solutions can be expected. (4) By imposing station purity, an integrated and robust planning model which integrates fleet assignment and crew connections was proposed. The impact of crew base purities and fleet purities on FAM profit, crew scheduling, and computational efficiency were investigated. (5) Airline integrated recovery method was studied. A recovery scope for integrated recovery was proposed to limit the ripple effect caused by disruptions. Based on the defined recovery scope, a new integrated recovery model and Bender's decomposition solution approach was studied.
Extensively revised and updated edition of the bestselling textbook, provides an overview of recent global airline industry evolution and future challenges Examines the perspectives of the many stakeholders in the global airline industry, including airlines, airports, air traffic services, governments, labor unions, in addition to passengers Describes how these different players have contributed to the evolution of competition in the global airline industry, and the implications for its future evolution Includes many facets of the airline industry not covered elsewhere in any single book, for example, safety and security, labor relations and environmental impacts of aviation Highlights recent developments such as changing airline business models, growth of emerging airlines, plans for modernizing air traffic management, and opportunities offered by new information technologies for ticket distribution Provides detailed data on airline performance and economics updated through 2013
Airline Operations and Delay Management fills a gap within the area of airline schedule planning by addressing the close relationships between network development, economic driving forces, schedule demands and operational complexity. The pursuit of robust airline scheduling and reliable airline operations is discussed in light of the future trends of airline scheduling and technology applications in airline operations. The book extensively explores the subject from the perspectives of airline economics, airline network development and airline scheduling practices. Many operational issues and problems are the inevitable consequences of airline network development and scheduling philosophy, so a wide perspective is essential to address airline operations in their proper context. The influence of airline network development on schedule planning and operations driven by economic forces and relaxed regulations is thoroughly examined for different types of operations in aviation such as network carriers and low-cost carriers. The advantages and disadvantages of running different networks and schedules are discussed and illustrated with real airline examples. In addition, this book provides readers with various mathematical models for solving different issues in airline operations and delay management. Airline Operations and Delay Management is ideal for senior undergraduate students as an introductory book on airline operations. The more advanced materials included in this book regarding modeling airline operations are suitable for postgraduate students, advanced readers and professionals interested in modeling and solving airline operational problems.