Download Free Robotic Systems For Handling And Assembly Book in PDF and EPUB Free Download. You can read online Robotic Systems For Handling And Assembly and write the review.

Although parallel robots are known to offer many advantages with respect to accuracy, dynamics, and stiffness, major breakthroughs in industrial applications have not yet taken place. This is due to a knowledge gap preventing fast and precise execution of industrial handling and assembly tasks. This book focuses on the design, modeling, and control of innovative parallel structures as well as the integration of novel machine elements. Special attention is paid to the integration of active components into lightweight links and passive joints. In addition, new control concepts are introduced to minimize structural vibrations. Although the optimization of robot systems itself allows a reduction of cycle times, these can be further decreased by improved path planning, robot programming, and automated assembly planning concepts described by 25 contributions within this book. The content of this volume is subdivided into four main parts dealing with Modeling and Design, System Implementation, Control and Programming as well as Adaptronics and Components. This book is aimed at researchers and postgraduates working in the field of parallel robots as well as practicing engineers dealing with industrial robot development and robotic applications.
This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI). The Editors Prof. Dr.-Ing. Thorsten Schüppstuhl is head of the Institute of Aircraft Production Technology (IFPT) at the Hamburg University of Technology. Prof. Dr.-Ing. Kirsten Tracht is head of the Bremen Institute for Mechanical Engineering (bime) at the University of Bremen. Prof. Dr.-Ing. Annika Raatz is head of the Institute of Assembly Technology (match) at the Leibniz University Hannover.
Robot Systems for Rail Transit Applications presents the latest advances in robotics and artificial intelligence for railway systems, giving foundational principles and running through special problems in robot systems for rail transit. State-of-the art research in robotics and railway systems is presented alongside a series of real-world examples. Eight chapters give definitions and characteristics of rail transit robot systems, describe assembly and collaborative robots in manufacturing, introduce automated guided vehicles and autonomous rail rapid transit, demonstrate inspection robots, cover trench robots, and explain unmanned aerial vehicles. This book offers an integrated and highly-practical way to approach robotics and artificial intelligence in rail-transit. - Introduces robot and artificial intelligence (AI) systems for rail transit applications - Presents research alongside step-by-step coverage of real-world cases - Gives the theoretical foundations underlying practical application - Offers solutions for high-speed railways from the latest work in robotics - Shows how robotics and AI systems afford new and efficient methods in rail transit
Although parallel robots are known to offer many advantages with respect to accuracy, dynamics, and stiffness, major breakthroughs in industrial applications have not yet taken place. This is due to a knowledge gap preventing fast and precise execution of industrial handling and assembly tasks. This book focuses on the design, modeling, and control of innovative parallel structures as well as the integration of novel machine elements. Special attention is paid to the integration of active components into lightweight links and passive joints. In addition, new control concepts are introduced to minimize structural vibrations. Although the optimization of robot systems itself allows a reduction of cycle times, these can be further decreased by improved path planning, robot programming, and automated assembly planning concepts described by 25 contributions within this book. The content of this volume is subdivided into four main parts dealing with Modeling and Design, System Implementation, Control and Programming as well as Adaptronics and Components. This book is aimed at researchers and postgraduates working in the field of parallel robots as well as practicing engineers dealing with industrial robot development and robotic applications.
Presents a new design strategy on a concentric design process. The assembly is parallel and simultaneously developed with the analysis and the possible redesign of the product and the assembly process. Several new design models and tools are explained and illustrated. The modular approach of the book allows the reader to navigate through the stages of the design process.
This book brings together some of the latest research in robot applications, control, modeling, sensors and algorithms. Consisting of three main sections, the first section of the book has a focus on robotic surgery, rehabilitation, self-assembly, while the second section offers an insight into the area of control with discussions on exoskeleton control and robot learning among others. The third section is on vision and ultrasonic sensors which is followed by a series of chapters which include a focus on the programming of intelligent service robots and systems adaptations.
Artificial Intelligence for Future Generation Robotics offers a vision for potential future robotics applications for AI technologies. Each chapter includes theory and mathematics to stimulate novel research directions based on the state-of-the-art in AI and smart robotics. Organized by application into ten chapters, this book offers a practical tool for researchers and engineers looking for new avenues and use-cases that combine AI with smart robotics. As we witness exponential growth in automation and the rapid advancement of underpinning technologies, such as ubiquitous computing, sensing, intelligent data processing, mobile computing and context aware applications, this book is an ideal resource for future innovation. - Brings AI and smart robotics into imaginative, technically-informed dialogue - Integrates fundamentals with real-world applications - Presents potential applications for AI in smart robotics by use-case - Gives detailed theory and mathematical calculations for each application - Stimulates new thinking and research in applying AI to robotics
This book focuses on the design of Robotic Flexible Assembly Cell (RFAC) with multi-robots. Its main contribution consists of a new effective strategy for scheduling RFAC in a multi-product assembly environment, in which dynamic status and multi-objective optimization problems occur. The developed strategy, which is based on a combination of advanced solution approaches such as simulation, fuzzy logic, system modeling and the Taguchi optimization method, fills an important knowledge gap in the current literature and paves the way for future research towards the goal of employing flexible assembly systems as effectively as possible despite the complexity of their scheduling.
Robotics is a modern interdisciplinary field that has emerged from the marriage of computerized numerical control and remote manipulation. Today's robotic systems have intelligence features, and are able to perform dexterous and intelligent human-like actions through appropriate combination of learning, perception, planning, decision making and control. This book presents advanced concepts, techniques and applications reflecting the experience of a wide group of specialists in the field. Topics include: kinematics, dynamics, path planning and tracking, control, mobile robotics, navigation, robot programming, and sophisticated applications in the manufacturing, medical, and other areas.
This volume gathers the latest advances, innovations, and applications in the field of robotics engineering, as presented by leading international researchers and engineers at the Latin American Symposium on Industrial and Robotic Systems (LASIRS), held in Tampico, Mexico on October-November 30-01 2019. The contributions cover all major areas of R&D and innovation in simulation, optimization, and control of robotics, such as design and optimization of robots using numerical and metaheuristic methods, autonomous and control systems, industrial compliance solutions, numerical simulations for manipulators and robots, metaheuristics applied to robotics problems, Industry 4.0, control and automation in petrochemical processes, simulation and control in aerospace and aeronautics, and education in robotics. The conference represented a unique platform to share the latest research and developments in simulation, control and optimization of robotic systems, and to promote cooperation among specialists in machine and mechanism area.