Download Free Robotic Sailing 2012 Book in PDF and EPUB Free Download. You can read online Robotic Sailing 2012 and write the review.

Robotic sailing offers the potential of wind propelled vehicles which are sufficiently autonomous to remain at sea for months at a time. These could replace or augment existing oceanographic sampling systems, be used in border surveillance and security or offer a means of carbon neutral transportation. To achieve this represents a complex, multi-disciplinary challenge to boat designers and naval architects, systems/electrical engineers and computer scientists. Since 2004 a series of competitions in the form of the Sailbot, World Robotic Sailing Championship and Microtransat competitions have sparked an explosion in the number of groups working on autonomous sailing robots. Despite this interest the longest distance sailed autonomously remains only a few hundred miles. Many of the challenges in building truly autonomous sailing robots still remain unsolved. These proceedings present the cutting edge of work in a variety of fields related to robotic sailing. They will be presented during the 5th International Robtoic Sailing Conference, which is taking place as part of the 2012 World Robotic Sailing Championships.
An autonomous sailboat robot is a boat that only uses the wind on its sail as the propelling force, without remote control or human assistance to achieve its mission. Robotic sailing offers the potential of long range and long term autonomous wind propelled, solar or wave-powered carbon neutral devices. Robotic sailing devices could contribute to monitoring of environmental, ecological, meteorological, hydrographic and oceanographic data. These devices can also be used in traffic monitoring, border surveillance, security, assistance and rescue. The dependency on changing winds and sea conditions presents a considerable challenge for short and long term route and stability planning, collision avoidance and boat control. Building a robust and seaworthy sailing robot presents a truly complex and multi-disciplinary challenge for boat designers, naval architects, systems/electrical engineers and computer scientists. Over the last decade, several events such as Sailbot, World Robotic Sailing Championship and the International Robotic Sailing Conference (WRSC/IRSC) and Microtransat have sparked an explosion in the number of groups working on autonomous sailing robots. Many of the challenges in building truly autonomous sailing robots still remain unsolved. These proceedings present the work of researchers on current and future challenges in autonomous sailboat development, presented at the WRSC/IRSC 2014 in Galway, Ireland, 8th – 12th September 2014.
This book contains selected papers that address a variety of topics related to the design, development and operation of unmanned and fully autonomous sailing boats. These papers were presented in the 9th International Robotic Sailing Conference, in association with the 9th World Robotic Sailing Championship that took place in Viana do Castelo, Portugal from the 5th to 10th of September 2016. The book is divided in three parts, each focusing on key aspects of robotic sailing. The first part addresses the design, construction and validation of autonomous sailboat platforms, including their rigs, appendages and control mechanisms. The second part is devoted to the development of sensors and algorithms to enhance the performance of robotic sailing boats, in terms of their speed, course control and manoeuvring ability. Finally, the papers in the last part are dedicated to the improvement of behaviours required for the accomplishment of complex autonomous missions. Robotic sailing is a relatively new multidisciplinary area of research, with a recognized great potential for persistent ocean observation. Using the wind for boat propulsion is something mankind has been doing for centuries. Automating and optimizing the sailing process in the harsh marine environment is an ever present challenge which is now promising to bear fruit.
Robotic Sailing 2017. This book contains the peer-reviewed papers presented at the 10th International Robotic Sailing Conference which was organized in conjunction with the 10th World Robotic Sailing Championship held in Horten, Norway the 4th-9th of September 2017. The seven papers cover topics of interest for autonomous robotic sailing which represents some of the most challenging research and development areas. The book is divided into two parts. The first part contains papers which focus on the design of sails and software for the assessment and predication of sailboat performance as well as software platforms and middleware for sailboat competition and research. The second part includes algorithms and strategies for navigation and collision avoidance on local, mid- and long range. The differences in approach in the included papers show that robotic sailing is still an emerging cross-disciplinary science. The multitude of suggestions to the specific problems of prediction and simulation of sailboats as well as the challenges of route planning, anti-grounding and collision avoidance are good indicators of science in its infancy. Hence, we may expect the future to hold great advances for robotic sailing.
This book presents the cutting edge developments within a broad field related to robotic sailing. The contributions were presented during the 8th International Robotic Sailing Conference, which has taken place as a part of the 2015 World Robotic Sailing Championships in Mariehamn, Åland (Finland), August 31st – September 4th 2015. Since more than a decade, a series of competitions such as the World Robotic Sailing Championship have stimulated a variety of groups to work on research and development around autonomous sailing robots, which involves boat designers, naval architects, electrical engineers and computer scientists. While many of the challenges in building a truly autonomous sailboat are still unsolved, the books presents the state of the art of research and development within platform optimization, route and stability planning, collision avoidance, power management and boat control.
An autonomous sailboat robot is a boat that only uses the wind on its sail as propelling force, without remote control or human assistance to achieve its mission. This involves autonomy in energy (using batteries, solar panels, turbines...), sensor data processing (compass, GPS, wind sensor...), actuators control (rudder and sail angle control...) and decision making (embedded computer with adequate algorithms). Although robotic sailing is a relatively new field of research, several applications exist for this type of robots: oceanographic and hydrographic research, maritime environment monitoring, meteorology, harbor safety, assistance and rescue in dangerous areas... Over the last decade, several events such as the Microtransat challenge, the WRSC/IRSC and SailBot have been set up to stimulate research and development around robotic sailing. These proceedings cover the current and future academic and technology challenges raised by the development of autonomous sailboat robots presented at the WRSC/IRSC (World Robotic Sailing Championship/International Robotic Sailing Conference) 2013, in Brest, France, 2-6 September 2013.
This book gathers a selection of papers presented at ROBOT 2019 – the Fourth Iberian Robotics Conference, held in Porto, Portugal, on November 20th–22nd, 2019. ROBOT 2019 is part of a series of conferences jointly organized by the SPR – Sociedade Portuguesa de Robótica (Portuguese Society for Robotics) and SEIDROB – Sociedad Española para la Investigación y Desarrollo en Robótica (Spanish Society for Research and Development in Robotics). ROBOT 2019 built upon several previous successful events, including three biannual workshops and the three previous installments of the Iberian Robotics Conference, and chiefly focused on presenting the latest findings and applications in robotics from the Iberian Peninsula, although the event was also open to research and researchers from other countries. The event featured five plenary talks on state-of-the-art topics and 16 special sessions, plus a main/general robotics track. In total, after a stringent review process, 112 high-quality papers written by authors from 24 countries were selected for publication.
Designed for beginners, undergraduate students, and robotics enthusiasts, Practical Robot Design: Game Playing Robots is a comprehensive guide to the theory, design, and construction of game-playing robots. Drawing on years of robot building and teaching experience, the authors demonstrate the key steps of building a robot from beginning to end, wi
This book constitutes the refereed conference proceedings of the 12th International Conference on Bio-inspired Information and Communications Technologies, held in Shanghai, China, in July 2020. Due to the safety concerns and travel restrictions caused by COVID-19, BICT 2020 took place online in a live stream. BICT 2020 aims to provide a world-leading and multidisciplinary venue for researchers and practitioners in diverse disciplines that seek the understanding of key principles, processes and mechanisms in biological systems and leverage those understandings to develop novel information and communications technologies (ICT). The 20 full and 8 short papers were carefully revied and selected from 56 submissions. In addition to the main track targeting broad and mainstream research topics, BICT 2020 includes four special tracks with focused research topics on internet of everything, intelligent internet of things and network applications, intelligent sensor network, and data-driven intelligent modeling, application and optimization.
This book constitutes the refereed proceedings of the 8th InternationalConference on Computational Logistics, ICCL 2017, held in Southampton,UK, in October 2017.The 38 papers presented in this volume were carefully reviewed and selected for inclusion in the book. They are organized in topical sections entitled: vehicle routing and scheduling; maritime logistics;synchromodal transportation; and transportation, logistics and supply chain planning.