Download Free Robotic Radiosurgery Book in PDF and EPUB Free Download. You can read online Robotic Radiosurgery and write the review.

Handbook of Robotic and Image-Guided Surgery provides state-of-the-art systems and methods for robotic and computer-assisted surgeries. In this masterpiece, contributions of 169 researchers from 19 countries have been gathered to provide 38 chapters. This handbook is 744 pages, includes 659 figures and 61 videos. It also provides basic medical knowledge for engineers and basic engineering principles for surgeons. A key strength of this text is the fusion of engineering, radiology, and surgical principles into one book. - A thorough and in-depth handbook on surgical robotics and image-guided surgery which includes both fundamentals and advances in the field - A comprehensive reference on robot-assisted laparoscopic, orthopedic, and head-and-neck surgeries - Chapters are contributed by worldwide experts from both engineering and surgical backgrounds
With contributions by numerous experts
Covers a wide range of topics on robotic radiosurgery. General topics on robotic radiosurgery include: 9 chapters on history, physics, radiobiology and technology and 24 chapters on CNS, non-CNS and future applications in robotic radiosurgery. Includes 157 figures and 93 tables,
The treatment of prostate cancer continues to be problematic owing to serious side-effects, including erectile dysfunction and urinary incontinence. Robotic radiosurgery offers a novel, rapid, non-invasive outpatient treatment option that combines robotics, advanced image-guided spatial positioning, and motion detection with submillimeter precision. This book examines all aspects of the treatment of prostate cancer with robotic radiosurgery. It explains how image-guided robotic radiosurgery overcomes the problem of patient motion during radiation therapy by continuously identifying the precise location of the prostate tumor throughout the course of treatment. Hypofractionated radiation delivery by means of robotic radiosurgery systems is also discussed in detail. The book closes by examining other emerging genitourinary applications of robotic radiosurgery. All of the authors are experts in their field who present a persuasive case for this fascinating technique.
This comprehensive encyclopedia, comprising a wide range of entries written by leading experts, provides detailed information on radiation oncology, including the most recent developments in the field. It will be of particular value for basic and clinical scientists in academia, practice, and industry and will also be of benefit to those in related fields, students, teachers, and interested laypersons.
This book provides a thorough background to the emerging field of medical robotics. It covers the mathematics needed to understand the use of robotic devices in medicine, including but not limited to robot kinematics, hand-eye and robot-world calibration, reconstruction, registration, motion planning, motion prediction, motion correlation, motion replication and motion learning. Additionally, basic methods behind state-of-the art robots like the DaVinci system, the CyberKnife, motorized C-arms and operating microscopes as well as stereotactic frames are presented. The book is a text book for undergraduates in computer science and engineering. The main idea of the book is to motivate the methods in robotics in medical applications rather than industrial applications. The book then follows the standard path for a robotics textbook. It is thus suitable for a first course in robotics for undergraduates. It is the first textbook on medical robotics.
This book brings together some of the latest research in robot applications, control, modeling, sensors and algorithms. Consisting of three main sections, the first section of the book has a focus on robotic surgery, rehabilitation, self-assembly, while the second section offers an insight into the area of control with discussions on exoskeleton control and robot learning among others. The third section is on vision and ultrasonic sensors which is followed by a series of chapters which include a focus on the programming of intelligent service robots and systems adaptations.
Compensating for Quasi-periodic Motion in Robotic Radiosurgery outlines the techniques needed to accurately track and compensate for respiratory and pulsatory motion during robotic radiosurgery. The algorithms presented within the book aid in the treatment of tumors that move during respiration. In Chapters 1 and 2, the book introduces the concept of stereotactic body radiation therapy, motion compensation strategies and the clinical state-of-the-art. In Chapters 3 through 5, the author describes and evaluates new methods for motion prediction, for correlating external motion to internal organ motion, and for the evaluation of these algorithms’ output based on an unprecedented amount of real clinical data. Finally, Chapter 6 provides a brief introduction into currently investigated, open questions and further fields of research. Compensating for Quasi-periodic Motion in Robotic Radiosurgery targets researchers working in the related fields of surgical oncology, artificial intelligence, robotics and more. Advanced-level students will also find this book valuable.
This book is a practical guide on image-guided robotic (CyberKnife®) radiosurgery of the brain and the spine. The volume introduces the radiosurgical community to the potential of image-guidance in the treatment of neurosurgical diseases including neuro-oncological, vascular and functional disorders. Principles of image-guided radiosurgery, including physics and radiobiology are considered. Each chapter provides a critical review of the literature and analyses of several aspects to offer an assessment of single and hypofractionated treatments. Based on the authors’ experience, tables or summaries presenting the treatment approaches and associated risks are included as well. Providing a practical guide to define the selection of dose, fractionation schemes, isodose line, margins, imaging, constraints to the structures at risk will support safe practice of neuroradiosurgery. This book aims to shed new light on the treatment of neoplastic and non-neoplastic diseases of the central nervous system using the CyberKnife® image-guided robotic radiosurgery system. It will be adopted by neurosurgery residents and neurosurgery consultants as well as residents in radiation oncology and radiation oncologists; medical physicists involved in radiosurgery procedures may also benefit from this book.
This edited and reviewed volume consists of papers that were originally presented at a workshop in the Scientific Center at Schloss Dagstuhl, Germany. It gives an overview of the field and presents the latest developments in the areas of modeling and planning for sensor based robots. The particular topics addressed include active vision, sensor fusion, environment modeling, motion planning, robot navigation, distributed control architectures, reactive behavior, and others.