Download Free Robotic Control And Nonholonomic Motion Planning Book in PDF and EPUB Free Download. You can read online Robotic Control And Nonholonomic Motion Planning and write the review.

Nonholonomic Motion Planning grew out of the workshop that took place at the 1991 IEEE International Conference on Robotics and Automation. It consists of contributed chapters representing new developments in this area. Contributors to the book include robotics engineers, nonlinear control experts, differential geometers and applied mathematicians. Nonholonomic Motion Planning is arranged into three chapter groups: Controllability: one of the key mathematical tools needed to study nonholonomic motion. Motion Planning for Mobile Robots: in this section the papers are focused on problems with nonholonomic velocity constraints as well as constraints on the generalized coordinates. Falling Cats, Space Robots and Gauge Theory: there are numerous connections to be made between symplectic geometry techniques for the study of holonomies in mechanics, gauge theory and control. In this section these connections are discussed using the backdrop of examples drawn from space robots and falling cats reorienting themselves. Nonholonomic Motion Planning can be used either as a reference for researchers working in the areas of robotics, nonlinear control and differential geometry, or as a textbook for a graduate level robotics or nonlinear control course.
Content Description #Includes bibliographical references.
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLABĀ® code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.
This book presents recent results in robot motion and control. Twenty papers presented at the Fourth International Workshop on Robot Motion and Control held in 2004 have been expanded. The authors of these papers were carefully selected and represent leading institutions in this field. The book covers nonlinear control of nonholonomic systems and legged robots as well as trajectory planning for these systems, topics not covered in previous books.
Introduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localization and mapping topics. The book provides a host of experimental results, a conceptual overview of systemic and software mobile robot control architectures, and a tour of the use of wheeled mobile robots and manipulators in industry and society. Introduction to Mobile Robot Control is an essential reference, and is also a textbook suitable as a supplement for many university robotics courses. It is accessible to all and can be used as a reference for professionals and researchers in the mobile robotics field. Clearly and authoritatively presents mobile robot concepts Richly illustrated throughout with figures and examples Key concepts demonstrated with a host of experimental and simulation examples No prior knowledge of the subject is required; each chapter commences with an introduction and background
Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.
The chapters in this book present an excellent exposition of recent developments in both robotics and nonlinear control centering around "hyper-redundancy", highly oscillatory inputs, optimal control, exterior differential systems, and the use of generic loops. The principal topics covered in the book are: adaptive control for a class of nonlinear systems, event-based motion planning, nonlinear control synthesis and path planning in robotics with special emphasis on nonholonomic and "hyper-redundant" robotic systems, control design and stabilization of driftless affine control systems (of the type arising in the kinematic control of nonholonomic robotic systems), control design methods for Hamiltonian systems and exterior differential systems. The chapter covering exterior differential systems contains a detailed introduction to the use of exterior differential methods, including the Goursat and extended Goursat normal forms and their application to path planning for nonholonomic systems.
One of the ultimate goals in Robotics is to create autonomous robots. Such robots will accept high-level descriptions of tasks and will execute them without further human intervention. The input descriptions will specify what the user wants done rather than how to do it. The robots will be any kind of versatile mechanical device equipped with actuators and sensors under the control of a computing system. Making progress toward autonomous robots is of major practical inter est in a wide variety of application domains including manufacturing, construction, waste management, space exploration, undersea work, as sistance for the disabled, and medical surgery. It is also of great technical interest, especially for Computer Science, because it raises challenging and rich computational issues from which new concepts of broad useful ness are likely to emerge. Developing the technologies necessary for autonomous robots is a formidable undertaking with deep interweaved ramifications in auto mated reasoning, perception and control. It raises many important prob lems. One of them - motion planning - is the central theme of this book. It can be loosely stated as follows: How can a robot decide what motions to perform in order to achieve goal arrangements of physical objects? This capability is eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. The minimum one would expect from an autonomous robot is the ability to plan its x Preface own motions.