Download Free Road Terrain Classification Technology For Autonomous Vehicle Book in PDF and EPUB Free Download. You can read online Road Terrain Classification Technology For Autonomous Vehicle and write the review.

This book provides cutting-edge insights into autonomous vehicles and road terrain classification, and introduces a more rational and practical method for identifying road terrain. It presents the MRF algorithm, which combines the various sensors’ classification results to improve the forward LRF for predicting upcoming road terrain types. The comparison between the predicting LRF and its corresponding MRF show that the MRF multiple-sensor fusion method is extremely robust and effective in terms of classifying road terrain. The book also demonstrates numerous applications of road terrain classification for various environments and types of autonomous vehicle, and includes abundant illustrations and models to make the comparison tables and figures more accessible.
This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.
This book constitutes the refereed post-conference proceedings of the Second International Conference on Pan-African Intelligence and Smart Systems, PAAISS 2022, which was held in Dakar, Senegal, in November 2022. The 27 revised full papers presented were carefully selected from 70 submissions. The theme of PAAISS 2022 was: ​IoT and Enabling Smart System Technologies, Special Topics of African Interest, Artificial Intelligence Theory and Methods, Artificial Intelligence Applications in Medicine, Remote sensing and AI in Agriculture, AI applications and Smart Systems technologies, Affective Computing, Intelligent Transportation systems.
The International Conference on Intelligent Autonomous Systems (IAS) conference brings together leading researchers interested in all aspects of autonomy and adaptivity of artificial systems. This book contains the proceedings of the tenth IAS in Baden Baden, Germany.
Robotics is undergoing a major transformation in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into human en- ronments and vigorously engaged in its new challenges. Interacting with, assi- ing, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives. Beyond its impact on physical robots, the body of knowledge robotics has p- duced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neuros- ences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the int- section of disciplines that the most striking advances happen. The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the research community the latest advances in the robotics field on the basis of their significance and quality. Through a wide and timely dissemination of critical - search developments in robotics, our objective with this series is to promote more exchanges and collaborations among the researchers in the community and c- tribute to further advancements in this rapidly growing field.
Ever stringent vehicle safety legislation and consumer expectations inspire the improvement of vehicle dynamic performance, which result in a rising number of control strategies for vehicle dynamics that rely on driving conditions. Road profiles, as the primary excitation source of vehicle systems, play a critical role in vehicle dynamics and also in public transportation. Knowledge of precise road conditions can thus be of great assistance for vehicle companies and government departments to develop proper dynamic control algorithms, and to fix roads in a timely manner and at the minimum cost, respectively. As a result, developing easy-to-use and accurate road estimation methods are of great importance in terms of reducing the cost related to vehicles and road maintenance as well as improving passenger comfort and handling capacity. A few books have already been published on road profile modeling and the influence of road unevenness on vehicle response. However, there is still room to discuss road assessment methods based on vehicle response and how road conditions can be used to improve vehicle dynamics. In this book, we use several generalized vehicle models to demonstrate the concepts, methods, and applications of vehicle response-based road estimation algorithms. In addition, necessary tools, algorithms, and methods are illustrated, and the benefits of the road estimation algorithms are evaluated. Furthermore, several case studies of controllable suspension systems to improve vehicle vertical dynamics are presented.
Unmanned ground vehicles (UGV) are expected to play a key role in the Army's Objective Force structure. These UGVs would be used for weapons platforms, logistics carriers, and reconnaissance, surveillance, and target acquisition among other things. To examine aspects of the Army's UGV program, assess technology readiness, and identify key issues in implementing UGV systems, among other questions, the Deputy Assistant Secretary of the Army for Research and Technology asked the National Research Council (NRC) to conduct a study of UGV technologies. This report discusses UGV operational requirements, current development efforts, and technology integration and roadmaps to the future. Key recommendations are presented addressing technical content, time lines, and milestones for the UGV efforts.
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
This book contains the latest research on machine learning and embedded computing in advanced driver assistance systems (ADAS). It encompasses research in detection, tracking, LiDAR and camera processing, ethics, and communications. Several new datasets are also provided for future research work. Researchers and others interested in these topics will find important advances contained in this book.