Download Free Rnai Based Pesticides Book in PDF and EPUB Free Download. You can read online Rnai Based Pesticides and write the review.

This book explores the development of nanopesticides and tests of their biological activity against target organisms. It also covers the effects of nanopesticides in the aquatic and terrestrial environments, along with related subjects including fate, behaviour, mechanisms of action and toxicity. Moreover, the book discusses the potential risks of nanopesticides for non-target organisms, as well as regulatory issues and future perspectives.
Plants are vulnerable to pathogens including fungi, bacteria, and viruses, which cause critical problems and deficits. Crop protection by plant breeding delivers a promising solution with no obvious effect on human health or the local ecosystem. Crop improvement has been the most powerful approach for producing unique crop cultivars since domestication occurred, making possible the main innovations in feeding the globe and community development. Genome editing is one of the genetic devices that can be implemented, and disease resistance is frequently cited as the most encouraging application of CRISPR/Cas9 technology in agriculture. Nanobiotechnology has harnessed the power of genome editing to develop agricultural crops. Nanosized DNA or RNA nanotechnology approaches could contribute to raising the stability and performance of CRISPR guide RNAs. This book brings together the latest research in these areas. CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection presents a complete understanding of the RNAi and CRISPR/Cas9 techniques for controlling mycotoxins, fighting plant nematodes, and detecting plant pathogens. CRISPR/Cas genome editing enables efficient targeted modification in most crops, thus promising to accelerate crop improvement. CRISPR/Cas9 can be used for management of plant insects, and various plant pathogens. The book is an important reference source for both plant scientists and environmental scientists who want to understand how nano biotechnologically based approaches are being used to create more efficient plant protection and plant breeding systems. Shows how nanotechnology is being used as the basis for new solutions for more efficient plant breeding and plant protection Outlines the major techniques and applications of both CRISPR and RNAi technologies Assesses the major challenges of escalating these technologies on a mass scale
Development of RNAi in Insects and RNAi-Based Pest Control.
RNA interference (RNAi) is a widely used technology for gene silencing and has become a key tool in a myriad of research and lead discoveries. In recent years, the mechanism of RNAi agents has been well investigated, and the technique has been optimized for better effectiveness and safety. On the other hand, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9/gRNA system is a recent, novel, targeted genome-editing technique derived from the bacterial immune system. Recent advances in gene-editing research and technologies have enabled the CRISPR Cas9 system to become a popular tool for sequence-specific gene editing to correct and modify eukaryotic systems. In this book, we will focus on the mechanisms, applications, regulations (their pros and cons), and various ways in which RNAi-based methods and CRIPSR-Cas9 technology have stimulated the modulation of gene expression, thereby making them a promising therapeutic tool to treat and prevent complex diseases and disorders.
The fast-growing human population requires the development of new agricultural technologies to meet consumers ́ demand, while minimizing environmental impacts. Insect pests are one of the main causes for losses in agriculture production, and current control technologies based on pesticide application or the use of transgenic crops expressing Bacillus thuringiensis toxin proteins are facing efficacy challenges. Novel approaches to control pests are urgently necessary. RNA interference (RNAi) is a gene silencing mechanism triggered by providing double-stranded RNA (dsRNA), that when ingested into insects can lead to death or affect the viability of the target pest. Transgenic plants expressing dsRNA version of insect specific target genes are the new generation of resistant plants. However, the RNAi mechanism is not conserved among insect orders, and its elucidation is the key to develop commercial RNAi crops. In this chapter, we review the core RNAi pathway in insects and the dsRNA uptake, amplification, and spread of systemic silencing signals in some key insect species. We also highlight some of the experimental steps before developing an insect-pest-resistant "RNAi plant". Lastly, we review some of the most recent development studies to control agricultural insect pests by RNAi transgenic plants.
This book provides recent contributions of current strategies to control insect pests written by experts in their respective fields. Topics include semiochemicals based insect management techniques, assessment of lethal dose/concentrations, strategies for efficient biological control practices, bioinsecticidal formulations and mechanisms of action involving RNAi technology, light-trap collection of insects, the use of sex pheromonal components and attractants for pest insect capture, measures to increase plant resistance in forest plantations, the use of various baculoviruses as biopesticides, and effect of a pathogenic bacterium against an endangered butterfly species. There are several other chapters that focus on insect vectors, including biting midges as livestock vectors in Tunisia, mosquitoes as vectors in Brazil, human disease vectors in Tanzania, pathogenic livestock and human vectors in Africa, insect vectors of Chagas disease, and transgenic and paratransgenic biotechnologies against dipteran pests and vectors. This book targets general biologists, entomologists, ecologists, zoologists, virologists, and epidemiologists, including both teachers and students.
RNAi technology is used for large-scale screens that systematically shut down each gene in the cell, which can help identify the components necessary for a particular cellular process or an event such as cell division. Exploitation of the pathway is also a promising tool in biotechnology and medicine. Introducing new technology in the study of RNA