Download Free Rna Structure And Dynamics Book in PDF and EPUB Free Download. You can read online Rna Structure And Dynamics and write the review.

This volume provides a wide spectrum of multidisciplinary approaches for studying RNA structure and dynamics, including detailed accounts of experimental and computational procedures. Chapters guide readers through cryo-electron microscopy, crystallography, isothermal titration calorimetry, small angle X-ray scattering, single-molecule Förster Energy transfer, X-ray free electron laser, atomic force microscopy, computational simulation, and prediction. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, RNA Structure and Dynamics aims to be a foundation for future studies and to be a source of inspiration for new investigations in the field.
With the dramatic increase in RNA 3D structure determination in recent years, we now know that RNA molecules are highly structured. Moreover, knowledge of RNA 3D structures has proven crucial for understanding in atomic detail how they carry out their biological functions. Because of the huge number of potentially important RNA molecules in biology, many more than can be studied experimentally, we need theoretical approaches for predicting 3D structures on the basis of sequences alone. This volume provides a comprehensive overview of current progress in the field by leading practitioners employing a variety of methods to model RNA 3D structures by homology, by fragment assembly, and by de novo energy and knowledge-based approaches.
This volume contains contributions from the speakers at the NATO Advanced Research Workshop on "3D 5tructure and Dynamics of RNA", which was held in Renesse, The Netherlands, 21 - 24 August, 1985. Two major developments have determined the progress of nucleic acid research during the last decade. First, manipulation of genetic material by recombinant DNA methodology has enabled detailed studies of the function of nucleic acids in vivo. 5econd, the use of powerful physical methods, such as X-ray diffraction and nuclear magnetic resonance spectroscopy, in the study of biomacromolecules has provided information regarding the structure and the dynamics of nucleic acids. Both developments were enabled by the advance of synthetic methods that allow preparation of nucleic acid molecules of required sequence and length. The basic understanding of nucleic acid function will ultimately depend on a close collaboration between molecular biologists and biophy sicists. In the case of RNA, the ground rules for the formation of secondary structure have been derived from physical studies of oligoribonucleotides. Powerfull spectroscopic techniques have revealed more details of ~~A structure including novel conformations (e.g. left-handed Z-RNA). A wealth of information has been obtained by studying the relatively small transfer RNA molecules. A few of these RNAs have been crystallized, enabling determination of their three-dimensional structure. It has become apparent that "non-classical" basepairing between distal nucleotides gives rise to tertiary interactions, determining the overall shape of the molecule.
With the dramatic increase in RNA 3D structure determination in recent years, we now know that RNA molecules are highly structured. Moreover, knowledge of RNA 3D structures has proven crucial for understanding in atomic detail how they carry out their biological functions. Because of the huge number of potentially important RNA molecules in biology, many more than can be studied experimentally, we need theoretical approaches for predicting 3D structures on the basis of sequences alone. This volume provides a comprehensive overview of current progress in the field by leading practitioners employing a variety of methods to model RNA 3D structures by homology, by fragment assembly, and by de novo energy and knowledge-based approaches.
This MIE volume provides laboratory techniques that aim to predict the structure of a protein which can have tremendous implications ranging from drug design, to cellular pathways and their dynamics, to viral entry into cells. Expert researchers introduce the most advanced technologies and techniques in protein structure and folding Includes techniques on tiling assays
This MIE volume provides laboratory techniques that aim to predict the structure of a protein which can have tremendous implications ranging from drug design, to cellular pathways and their dynamics, to viral entry into cells. Expert researchers introduce the most advanced technologies and techniques in protein structure and folding Includes techniques on tiling assays
This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in RNA folding and dynamics, RNA-protein interactions and large RNPs. Continues the legacy of this premier serial with quality chapters on structures of large RNA molecules and their complexes
While structure-function relationships of proteins have been studied for a long time, structural studies of RNA face additional challenges. Nevertheless, with the continuous discovery of novel RNA molecules with key cellular functions and of novel pathways and interaction networks, the need for structural information of RNA is still increasing. This volume provides an introduction into techniques to assess structure and folding of RNA. Each chapter explains the theoretical background of one technique, and illustrates possibilities and limitations in selected application examples.
Providing a comprehensive account of the structures and physical chemistry properties of nucleic acids, with special emphasis on biological function, this text has been organized to meet the needs of those who have only a basic understanding of physical chemistry and molecular biology.