Download Free Rna Sequence Alignment And Secondary Structure Prediction Book in PDF and EPUB Free Download. You can read online Rna Sequence Alignment And Secondary Structure Prediction and write the review.

The existence of genes for RNA molecules not coding for proteins (ncRNAs) has been recognized since the 1950's, but until recently, aside from the critically important ribosomal and transfer RNA genes, most focus has been on protein coding genes. However, a long series of striking discoveries, from RNA's ability to carry out catalytic function, to discovery of riboswitches, microRNAs and other ribo-regulators performing critical tasks in essentially all living organisms, has created a burgeoning interest in this primordial component of the biosphere. However, the structural characteristics and evolutionary constraints on RNA molecules are very different from those of proteins, necessitating development of a completely new suite of informatic tools to address these challenges. In RNA Sequence, Structure, Function: Computational and Bioinformatic Methods, expert researchers in the field describe a substantial and relevant fraction of these methodologies from both practical and computational/algorithmic perspectives. Focusing on both of these directions addresses both the biologist interested in knowing more about RNA bioinformatics as well as the bioinformaticist interested in more detailed aspects of the algorithms. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results. Thorough and intuitive, RNA Sequence, Structure, Function: Computational and Bioinformatic Methods aids scientists in continuing to study key methods and principles of RNA bioinformatics.
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
With the dramatic increase in RNA 3D structure determination in recent years, we now know that RNA molecules are highly structured. Moreover, knowledge of RNA 3D structures has proven crucial for understanding in atomic detail how they carry out their biological functions. Because of the huge number of potentially important RNA molecules in biology, many more than can be studied experimentally, we need theoretical approaches for predicting 3D structures on the basis of sequences alone. This volume provides a comprehensive overview of current progress in the field by leading practitioners employing a variety of methods to model RNA 3D structures by homology, by fragment assembly, and by de novo energy and knowledge-based approaches.
This volume provides protocols and procedures for determining and modeling RNA structure. Chapters guide the reader through protocols for RNA secondary structure prediction, single sequence modeling, Crumple, RNAstructure to model conserved secondary structures with multiple homologs, the prediction of bimolecular secondary structures with RNAstructure, STarMir, protocols for structure mapping, mapping data to constrain or restrain RNA secondary structure prediction with RNAstructure, unassigned NMR resonances, modeling protocols for Rosetta FARFAR, RNAComposer , ModeRNA, and MC-Fold. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and Practical, RNA Structure Determination: Methods and Protocols aims to ensure successful results in the further study of this vital field.
From basic performing of sequence alignment through a proficiency at understanding how most industry-standard alignment algorithms achieve their results, Multiple Sequence Alignment Methods describes numerous algorithms and their nuances in chapters written by the experts who developed these algorithms. The various multiple sequence alignment algorithms presented in this handbook give a flavor of the broad range of choices available for multiple sequence alignment generation, and their diversity is a clear reflection of the complexity of the multiple sequence alignment problem and the amount of information that can be obtained from multiple sequence alignments. Each of these chapters not only describes the algorithm it covers but also presents instructions and tips on using their implementation, as is fitting with its inclusion in the highly successful Methods in Molecular Biology series. Authoritative and practical, Multiple Sequence Alignment Methods provides a readily available resource which will allow practitioners to experiment with different algorithms and find the particular algorithm that is of most use in their application.
In much of biology, the search for understanding the relation between structure and function is now taking place at the macromolecular level. Proteins, nucleic acids, and polysaccharides are macromolecule--polymers formed from families of simpler subunits. Because of their size and complexity, the polymers are capable of both inter- and intramolecular interactions. These interactions confer upon the polymers distinctive three-dimensional shapes. These tertiary configurations, in turn, determine the function of the macromolecule. Computers have become so inextricably involved in empirical studies of three-dimensional macromolecular structure that mathematical modeling, or theory, and experimental approaches are interrelated aspects of a single enterprise.
Covers the fundamentals and techniques of multiple biological sequence alignment and analysis, and shows readers how to choose the appropriate sequence analysis tools for their tasks This book describes the traditional and modern approaches in biological sequence alignment and homology search. This book contains 11 chapters, with Chapter 1 providing basic information on biological sequences. Next, Chapter 2 contains fundamentals in pair-wise sequence alignment, while Chapters 3 and 4 examine popular existing quantitative models and practical clustering techniques that have been used in multiple sequence alignment. Chapter 5 describes, characterizes and relates many multiple sequence alignment models. Chapter 6 describes how traditionally phylogenetic trees have been constructed, and available sequence knowledge bases can be used to improve the accuracy of reconstructing phylogeny trees. Chapter 7 covers the latest methods developed to improve the run-time efficiency of multiple sequence alignment. Next, Chapter 8 covers several popular existing multiple sequence alignment server and services, and Chapter 9 examines several multiple sequence alignment techniques that have been developed to handle short sequences (reads) produced by the Next Generation Sequencing technique (NSG). Chapter 10 describes a Bioinformatics application using multiple sequence alignment of short reads or whole genomes as input. Lastly, Chapter 11 provides a review of RNA and protein secondary structure prediction using the evolution information inferred from multiple sequence alignments. • Covers the full spectrum of the field, from alignment algorithms to scoring methods, practical techniques, and alignment tools and their evaluations • Describes theories and developments of scoring functions and scoring matrices •Examines phylogeny estimation and large-scale homology search Multiple Biological Sequence Alignment: Scoring Functions, Algorithms and Applications is a reference for researchers, engineers, graduate and post-graduate students in bioinformatics, and system biology and molecular biologists. Ken Nguyen, PhD, is an associate professor at Clayton State University, GA, USA. He received his PhD, MSc and BSc degrees in computer science all from Georgia State University. His research interests are in databases, parallel and distribute computing and bioinformatics. He was a Molecular Basis of Disease fellow at Georgia State and is the recipient of the highest graduate honor at Georgia State, the William M. Suttles Graduate Fellowship. Xuan Guo, PhD, is a postdoctoral associate at Oak Ridge National Lab, USA. He received his PhD degree in computer science from Georgia State University in 2015. His research interests are in bioinformatics, machine leaning, and cloud computing. He is an editorial assistant of International Journal of Bioinformatics Research and Applications. Yi Pan, PhD, is a Regents' Professor of Computer Science and an Interim Associate Dean and Chair of Biology at Georgia State University. He received his BE and ME in computer engineering from Tsinghua University in China and his PhD in computer science from the University of Pittsburgh. Dr. Pan's research interests include parallel and distributed computing, optical networks, wireless networks and bioinformatics. He has published more than 180 journal papers with about 60 papers published in various IEEE/ACM journals. He is co-editor along with Albert Y. Zomaya of the Wiley Series in Bioinformatics.
RNA Biochemistry and Biotechnology describes various aspects of nucleic acid and protein structure, mainly RNA structure and proteins, interacting with specific RNA species. Papers deal with DNA protein interactions, telomerase, aminoacyl-tRNA synthetases, elongation factor Tu, DNA repair, RNA structure, NMR technology, RNA aptamer interaction of biological macromolecules with metal ions. Two papers deal with theoretical aspects of RNA structure production and computer modelling. Many papers describe the possibility of commercial application of RNA biotechnology. One article discusses the impact of direct democracy on basic science supporting biotechnology. Readership: Advanced graduate students, Ph.D. students and young scientists as well as specialists in the field.
This book explores recent progress in RNA secondary, tertiary structure prediction, and its application from an expansive point of view. Because of advancements in experimental protocols and devices, the integration of new types of data as well as new analysis techniques is necessary, and this volume discusses additional topics that are closely related to RNA structure prediction, such as the detection of structure-disrupting mutations, high-throughput structure analysis, and 3D structure design. Written for the highly successful Methods in Molecular Biology series, chapters feature the kind of detailed implementation advice that leads to quality research results. Authoritative and practical, RNA Structure Prediction serves as a valuable guide for both experimental and computational RNA researchers.
Focusing on in vitro and intracellular RNA structure formation, RNA Folding: Methods and Protocols provides a comprehensive collection of experimental protocols which are suitable to dissect RNA folding pathways and to characterize the structure of RNA folding intermediates at nucleotide or even atomic resolution. The presented techniques include powerful tools with a long tradition in RNA research as well as more advanced, novel methods, thus the methods span multiple disciplines, including molecular biology, biochemistry, biophysics, and computational biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and authoritative, RNA Folding: Methods and Protocols serves as a vital reference for researchers attempting to gain insights into the secrets of this astounding macromolecule.