Download Free Rna Damage And Repair Book in PDF and EPUB Free Download. You can read online Rna Damage And Repair and write the review.

Ribonucleic acid (RNA) is a macromolecule that plays a central role in cell physiology: RNA molecules act as intermediates between the deoxyribonucleic acid (DNA), where genetic information is stored, and proteins, which perform the necessary functions within the cell. Traditionally, the structural and functional properties of RNA are closely linked to gene expression. However, RNA-based enzymes, called ribozymes, are also involved in catalysis and small RNAs regulate key cellular processes, such as cell growth, division, differentiation, aging and death. RNA is a sensitive macromolecule that can be easily damaged by environmental conditions (ultraviolet radiation, oxidative stress) and biological factors (ribonucleases, ribotoxins, CRISPR-Cas systems). Therefore, cells have developed mechanisms to protect and/or repair RNA molecules. This book presents an overview of the biology of RNA damage, protection and repair in prokaryotes and eukaryotes. Individual chapters cover the expression regulation, enzymology and physiological role of such systems, and link them to important human diseases such as cancer and degenerative diseases.
Liver Pathophysiology: Therapies and Antioxidants is a complete volume on morphology, physiology, biochemistry, molecular biology and treatment of liver diseases. It uses an integral approach towards the role of free radicals in the pathogenesis of hepatic injury, and how their deleterious effects may be abrogated by the use of antioxidants. Written by the most prominent authors in the field, this book will be of use to basic and clinical scientists and clinicians working in the biological sciences, especially those dedicated to the study and treatment of liver pathologies. - Presents the most recent advances in hepatology, with a special focus on the role of oxidative stress in liver injury. - Provides in vivo and in vitro models to study human liver pathology. - Explains the beneficial effects of antioxidants on liver diseases. - Contains the most recent and modern treatments of hepatic pathologies, including, but not limited to, stem cells repopulation, gene therapy and liver transplantation.
The DNA of all organisms is constantly being damaged by endogenous and exogenous sources. Oxygen metabolism generates reactive species that can damage DNA, proteins and other organic compounds in living cells. Exogenous sources include ionizing and ultraviolet radiations, carcinogenic compounds and environmental toxins among others. The discovery of multiple DNA lesions and DNA repair mechanisms showed the involvement of DNA damage and DNA repair in the pathogenesis of many human diseases, most notably cancer. These books provide a comprehensive overview of the interdisciplinary area of DNA damage and DNA repair, and their relevance to disease pathology. Edited by recognised leaders in the field, this two-volume set is an appealing resource to a variety of readers including chemists, chemical biologists, geneticists, cancer researchers and drug discovery scientists.
Environmental stresses and metabolic by-products can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. As a consequence, plant growth and productivity are irreversibly compromised. To overcome genotoxic injury, plants have evolved complex strategies relying on a highly efficient repair machinery that responds to sophisticated damage perception/signaling networks. The DNA damage signaling network contains several key components: DNA damage sensors, signal transducers, mediators, and effectors. Most of these components are common to other eukaryotes but some features are unique to the plant kingdom. ATM and ATR are well-conserved members of PIKK family, which amplify and transduce signals to downstream effectors. ATM primarily responds to DNA double strand breaks while ATR responds to various forms of DNA damage. The signals from the activated transducer kinases are transmitted to the downstream cell-cycle regulators, such as CHK1, CHK2, and p53 in many eukaryotes. However, plants have no homologue of CHK1, CHK2 nor p53. The finding of Arabidopsis transcription factor SOG1 that seems functionally but not structurally similar to p53 suggests that plants have developed unique cell cycle regulation mechanism. The double strand break repair, recombination repair, postreplication repair, and lesion bypass, have been investigated in several plants. The DNA double strand break, a most critical damage for organisms are repaired non-homologous end joining (NHEJ) or homologous recombination (HR) pathway. Damage on template DNA makes replication stall, which is processed by translesion synthesis (TLS) or error-free postreplication repair (PPR) pathway. Deletion of the error-prone TLS polymerase reduces mutation frequencies, suggesting PPR maintains the stalled replication fork when TLS is not available. Unveiling the regulation networks among these multiple pathways would be the next challenge to be completed. Some intriguing issues have been disclosed such as the cross-talk between DNA repair, senescence and pathogen response and the involvement of non-coding RNAs in global genome stability. Several studies have highlighted the essential contribution of chromatin remodeling in DNA repair DNA damage sensing, signaling and repair have been investigated in relation to environmental stresses, seed quality issues, mutation breeding in both model and crop plants and all these studies strengthen the idea that components of the plant response to genotoxic stress might represent tools to improve stress tolerance and field performance. This focus issue gives researchers the opportunity to gather and interact by providing Mini-Reviews, Commentaries, Opinions, Original Research and Method articles which describe the most recent advances and future perspectives in the field of DNA damage sensing, signaling and repair in plants. A comprehensive overview of the current progresses dealing with the genotoxic stress response in plants will be provided looking at cellular and molecular level with multidisciplinary approaches. This will hopefully bring together valuable information for both plant biotechnologists and breeders.
Stands as the most comprehensive guide to the subject-covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employe
An essential resource for all scientists researching cellular responses to DNA damage. • Introduces important new material reflective of the major changes and developments that have occurred in the field over the last decade. • Discussed the field within a strong historical framework, and all aspects of biological responses to DNA damage are detailed. • Provides information on covering sources and consequences of DNA damage; correcting altered bases in DNA: DNA repair; DNA damage tolerance and mutagenesis; regulatory responses to DNA damage in eukaryotes; and disease states associated with defective biological responses to DNA damage.
This volume is a timely and comprehensive description of the many facets of DNA and RNA modification-editing processes and to some extent repair mechanisms. Each chapter offers fundamental principles as well as up to date information on recent advances in the field (up to end 2008). They ended by a shortconclusion and future prospect' section and
Aging has long since been ascribed to the gradual accumulation of DNA mutations in the genome of somatic cells. However, it is only recently that the necessary sophisticated technology has been developed to begin testing this theory and its consequences. Vijg critically reviews the concept of genomic instability as a possible universal cause of aging in the context of a new, holistic understanding of genome functioning in complex organisms resulting from recent advances in functional genomics and systems biology. It provides an up-to-date synthesis of current research, as well as a look ahead to the design of strategies to retard or reverse the deleterious effects of aging. This is particularly important in a time when we are urgently trying to unravel the genetic component of aging-related diseases. Moreover, there is a growing public recognition of the imperative of understanding more about the underlying biology of aging, driven by continuing demographic change.
This book originated in numerous Gordon Research Conferences and many other meetings of scientists working in chemistry, biophysics, biochemistry, and biology related to mutagenesis and carcinogenesis. It seemed the appro priate time to sit back and summarize the results of several decades of research in laboratories in different countries. We are very grateful to the Rockefeller Foundation for inviting us to formulate and begin writing the book at the Center for International Studies in Bellagio, Italy, where we were Resident Scholars. We are fortunate to have had the assistance of so many colleagues around the world who cheerfully sent original data, figures, and preprints and lis tened patiently to us as we worked out the various conflicting ideas in this fast-moving. field. The names of these scientists are found within the tables, figures, and references. There is one person whose contributions we especially wish to acknowl edge. Professor Heinz Fraenkel-Conrat was present at the inception of this book and throughout the writing encouraged and criticized in apprOximately equal proportion. Finally, his editing and amalgamation of our two styles gave us great comfort. B.S. D.G.