Download Free Rna Chaperones Book in PDF and EPUB Free Download. You can read online Rna Chaperones and write the review.

This book provides a wide spectrum of methods to study RNA chaperones in vitro, at the single molecule level, and protocols useful for cell-based assays. Beginning with a section on a number of bacterial proteins for study, the volume also explores proteins from eukaryotic cells and how to delve into the complex interactions between RNA chaperones and the folding and unfolding of proteins. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, RNA Chaperones: Methods and Protocols serves as an ideal guide for scientists and students interested in RNA biology and RNA chaperones. Chapter 3 is available Open Access under a CC-BY 4.0 license via link.springer.com.
The heat shock, or cell stress, response was first identified in the polytene chromosomes of Drosophila. This was later related to the appearance of novel proteins within stressed cells, and the key signal stimulating this appearance was identified as the presence of unfolded proteins within the cell. It is now known that this is a key mechanism enabling cells to survive a multitude of physical, chemical and biological stresses. Since the promulgation of the ‘molecular chaperone’ concept as a general cellular function to control the process of correct protein folding, a large number of molecular chaperones and protein folding catalysts have been identified, and it has been recognized that not all molecular chaperones are stress proteins and vice versa. The discovery of molecular chaperones as folding proteins went hand-in-hand with their recognition as potent immunogens in microbial infection. It was subsequently shown that administration of molecular chaperones such as Hsp60, Hsp70 or Hsp90 could inhibit experimental autoimmune diseases and cancer. More recently evidence has accumulated to show that certain molecular chaperones are also present on the surface of cells or in extracellular fluids. A new paradigm is emerging: at least some molecular chaperones are secreted proteins with pro- or anti-inflammatory actions, regulating the immune response in human diseases such as coronary heart disease, diabetes and rheumatoid arthritis. In addition to having direct effects on cells, molecular chaperones can bind peptides and present them to T cells to modulate immune responses. This may be significant in the treatment of cancer. This is the first book bringing leading researchers in this field together to review and discuss: our current knowledge of cell stress response and molecular chaperones the changing paradigms of protein trafficking and function cell stress proteins as immunomodulators and pro- and anti-inflammatory signalling molecules the role of these proteins in various chronic diseases and their potential as preventative or therapeutic agents. The Biology of Extracellular Molecular Chaperones is of particular interest to immunologists, cell and molecular biologists, microbiologists and virologists, as well as clinical researchers working in cardiology, diabetes, rheumatoid arthritis and other inflammatory diseases.
Molecular chaperones are involved in a wide variety of essential cellular processes in living cells. A subset of molecular chaperones have been initially described as heat shock proteins protecting cells from stress damage by keeping cellular proteins in a folding competent state and preventing them from irreversible aggregation. Later it became obvious that molecular chaperones are also expressed constitutively in the cell and are involved in complex processes such as protein synthesis, intracellular protein transport, post-translational modification and secretion of proteins as well as receptor signalling. Hence, it is not surprising that molecular chaperones are implicated in the pathogenesis of many relevant diseases and could be regarded as potential pharmacological targets. Starting with the analysis of the mode of action of chaperones at the molecular, cellular and organismic level, this book will then describe specific aspects where modulation of chaperone action could be of pharmacological and therapeutic interest.
This volume, written by experts in the field, discusses the current understanding of the biophysical principles that govern RNA folding, with featured RNAs including the ribosomal RNAs, viral RNAs, and self-splicing introns. In addition to the fundamental features of RNA folding, the central experimental and computational approaches in the field are presented with an emphasis on their individual strengths and limitations, and how they can be combined to be more powerful than any method alone; these approaches include NMR, single molecule fluorescence, site-directed spin labeling, structure mapping, comparative sequence analysis, graph theory, course-grained 3D modeling, and more. This volume will be of interest to professional researchers and advanced students entering the field of RNA folding.
This volume of Methods in Enzymology aims to provide a reference for the diverse, powerful tools used to analyze RNA helicases. The contributions in this volume cover the broad scope of methods in the research on these enzymes. Several chapters describe quantitative biophysical and biochemical approaches to study molecular mechanisms and conformational changes of RNA helicases. Further chapters cover structural analysis, examination of co-factor effects on several representative examples, and the analysis of cellular functions of select enzymes. Two chapters outline approaches to the analysis of inhibitors that target RNA helicases. - This volume of Methods in Enzymology aims to provide a reference for the diverse, powerful tools used to analyze RNA helicases - The contributions in this volume cover the broad scope of methods in the research on these enzymes
This second edition details new and updated methods used for studying prokaryotic non-coding RNAs and their protein accomplices. Chapters detail discovery of ncRNAs, characterization of their structure, functions, and their interactomes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Regulatory RNA: Methods and Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
Revealing the many roles of RNA in regulating gene expression For decades after the discoveries of messenger RNA, transfer RNA, and ribosomal RNA, it was largely assumed that the role of RNA in the cell was limited to shuttling the genomic message, chaperoning amino acids, and toiling in the ribosomes. Eventually, hints that RNA molecules might have regulatory roles began to appear. With the advent of genomics and bioinformatics, it became evident that numerous other RNA forms exist and have specific functions, including small RNAs (sRNA), RNA thermometers, and riboswitches to regulate core metabolic pathways, bacterial pathogenesis, iron homeostasis, quorum sensing, and biofilm formation. All of these functions, and more, are presented in Regulating with RNA in Bacteria and Archaea, written by RNA biologists from around the globe. Divided into eight sections-RNases and Helicases, Cis-Acting RNAs, Cis Encoded Base Pairing RNAs, Trans-Encoded Base Pairing RNAs, Protein Titration and Scaffolding, General Considerations, Emerging Topics, and Resources-this book serves as an excellent resource for established RNA biologists and for the many scientists who are studying regulated cellular systems. It is no longer a fair assumption that gene expression regulation is the provenance of proteins only or that control is exerted primarily at the level of transcription. This book makes clear that regulatory RNAs are key partners along with proteins in controlling the complex interactions and pathways found within prokaryotes.
This book provides up-to-date information on experimental and computational characterization of the structural and functional properties of viral proteins, which are widely involved in regulatory and signaling processes. With chapters by leading research groups, it features current information on the structural and functional roles of intrinsic disorders in viral proteomes. It systematically addresses the measles, HIV, influenza, potato virus, forest virus, bovine virus, hepatitis, and rotavirus as well as viral genomics. After analyzing the unique features of each class of viral proteins, future directions for research and disease management are presented.