Download Free Risk Based Monitoring And Fraud Detection In Clinical Trials Using Jmp And Sas Hardcover Edition Book in PDF and EPUB Free Download. You can read online Risk Based Monitoring And Fraud Detection In Clinical Trials Using Jmp And Sas Hardcover Edition and write the review.

Improve efficiency while reducing costs in clinical trials with centralized monitoring techniques using JMP and SAS. International guidelines recommend that clinical trial data should be actively reviewed or monitored; the well-being of trial participants and the validity and integrity of the final analysis results are at stake. Traditional interpretation of this guidance for pharmaceutical trials has led to extensive on-site monitoring, including 100% source data verification. On-site review is time consuming, expensive (estimated at up to a third of the cost of a clinical trial), prone to error, and limited in its ability to provide insight for data trends across time, patients, and clinical sites. In contrast, risk-based monitoring (RBM) makes use of central computerized review of clinical trial data and site metrics to determine if and when clinical sites should receive more extensive quality review or intervention. Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS presents a practical implementation of methodologies within JMP Clinical for the centralized monitoring of clinical trials. Focused on intermediate users, this book describes analyses for RBM that incorporate and extend the recommendations of TransCelerate Biopharm Inc., methods to detect potential patient-or investigator misconduct, snapshot comparisons to more easily identify new or modified data, and other novel visual and analytical techniques to enhance safety and quality reviews. Further discussion highlights recent regulatory guidance documents on risk-based approaches, addresses the requirements for CDISC data, and describes methods to supplement analyses with data captured external to the study database. Given the interactive, dynamic, and graphical nature of JMP Clinical, any individual from the clinical trial team - including clinicians, statisticians, data managers, programmers, regulatory associates, and monitors - can make use of this book and the numerous examples contained within to streamline, accelerate, and enrich their reviews of clinical trial data. The analytical methods described in Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS enable the clinical trial team to take a proactive approach to data quality and safety to streamline clinical development activities and address shortcomings while the study is ongoing. This book is part of the SAS Press
Improve efficiency while reducing costs in clinical trials with centralized monitoring techniques using JMP and SAS. International guidelines recommend that clinical trial data should be actively reviewed or monitored; the well-being of trial participants and the validity and integrity of the final analysis results are at stake. Traditional interpretation of this for pharmaceutical trials has led to extensive on-site monitoring, including 100% source data verification. On-site review is time consuming, expensive (estimated at up to a third of the cost of a clinical trial), prone to error, and limited in its ability to provide insight for data trends. In contrast, risk-based monitoring (RBM) makes use of central computerized review of clinical trial data and site metrics to determine if and when clinical sites should receive more extensive quality review or intervention. Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS presents a practical implemen
Get the tools you need to use SAS® in clinical trial design! Unique and multifaceted, Modern Approaches to Clinical Trials Using SAS: Classical, Adaptive, and Bayesian Methods, edited by Sandeep M. Menon and Richard C. Zink, thoroughly covers several domains of modern clinical trial design: classical, group sequential, adaptive, and Bayesian methods that are applicable to and widely used in various phases of pharmaceutical development. Written for biostatisticians, pharmacometricians, clinical developers, and statistical programmers involved in the design, analysis, and interpretation of clinical trials, as well as students in graduate and postgraduate programs in statistics or biostatistics, the book touches on a wide variety of topics, including dose-response and dose-escalation designs; sequential methods to stop trials early for overwhelming efficacy, safety, or futility; Bayesian designs that incorporate historical data; adaptive sample size re-estimation; adaptive randomization to allocate subjects to more effective treatments; and population enrichment designs. Methods are illustrated using clinical trials from diverse therapeutic areas, including dermatology, endocrinology, infectious disease, neurology, oncology, and rheumatology. Individual chapters are authored by renowned contributors, experts, and key opinion leaders from the pharmaceutical/medical device industry or academia. Numerous real-world examples and sample SAS code enable users to readily apply novel clinical trial design and analysis methodologies in practice.
Praise for the first edition: "Given the author’s years of experience as a statistician and as a founder of the first DMC in pharmaceutical industry trials, I highly recommend this book—not only for experts because of its cogent and organized presentation, but more importantly for young investigators who are seeking information about the logistical and philosophical aspects of a DMC." -S. T. Ounpraseuth, The American Statistician In the first edition of this well-regarded book, the author provided a groundbreaking and definitive guide to best practices in pharmaceutical industry data monitoring committees (DMCs). Maintaining all the material from the first edition and adding substantial new material, Data and Safety Monitoring Committees in Clinical Trials, Second Edition is ideal for training professionals to serve on their first DMC as well as for experienced clinical and biostatistical DMC members, sponsor and regulatory agency staff. The second edition guides the reader through newly emerging DMC responsibilities brought about by regulations emphasizing risk vs benefit and the emergence of risk-based monitoring. It also provides the reader with many new statistical methods, clinical trial designs and clinical terminology that have emerged since the first edition. The references have been updated and the very popular end-of-chapter Q&A section has been supplemented with many new experiences since the first edition. New to the Second Edition: Presents statistical methods, tables, listings and graphs appropriate for safety review, efficacy analysis and risk vs benefit analysis, SPERT and PRISMA initiatives. Newly added interim analysis for efficacy and futility section. DMC responsibilities in SUSARs (Serious Unexpected Serious Adverse Reactions), basket trials, umbrella trials, dynamic treatment strategies /SMART trials, pragmatic trials, biosimilar trials, companion diagnostics, etc. DMC responsibilities for data quality and fraud detection (Fraud Recovery Plan) Use of patient reported outcomes of safety Use of meta analysis and data outside the trial New ideas for training and compensation of DMC members Jay Herson is Senior Associate, Biostatistics, Johns Hopkins Bloomberg School of Public Health where he teaches courses on clinical trials and drug development based on his many years experience in clinical trials in academia and the pharmaceutical industry.
Praise for the first edition: "Given the author’s years of experience as a statistician and as a founder of the first DMC in pharmaceutical industry trials, I highly recommend this book—not only for experts because of its cogent and organized presentation, but more importantly for young investigators who are seeking information about the logistical and philosophical aspects of a DMC." -S. T. Ounpraseuth, The American Statistician ? In the first edition of this well-regarded book, the author provided a groundbreaking and definitive guide to best practices in pharmaceutical industry data monitoring committees (DMCs). Maintaining all the material from the first edition and adding substantial new material, Data and Safety Monitoring Committees in Clinical Trials, Second Edition is ideal for training professionals to serve on their first DMC as well as for experienced clinical and biostatistical DMC members, sponsor and regulatory agency staff. The second edition guides the reader through newly emerging DMC responsibilities brought about by regulations emphasizing risk vs benefit and the emergence of risk-based monitoring. It also provides the reader with many new statistical methods, clinical trial designs and clinical terminology that have emerged since the first edition. The references have been updated and the very popular end-of-chapter Q&A section has been supplemented with many new experiences since the first edition. ? New to the Second Edition: Presents statistical methods, tables, listings and graphs appropriate for safety review, efficacy analysis and risk vs benefit analysis, SPERT and PRISMA initiatives. Newly added interim analysis for efficacy and futility section. DMC responsibilities in SUSARs (Serious Unexpected Serious Adverse Reactions), basket trials, umbrella trials, dynamic treatment strategies /SMART trials, pragmatic trials, biosimilar trials, companion diagnostics, etc. DMC responsibilities for data quality and fraud detection (Fraud Recovery Plan) Use of patient reported outcomes of safety Use of meta analysis and data outside the trial New ideas for training and compensation of DMC members ? Jay Herson is Senior Associate, Biostatistics, Johns Hopkins Bloomberg School of Public Health where he teaches courses on clinical trials and drug development based on his many years experience in clinical trials in academia and the pharmaceutical industry. ? ? ? ? ? ? ? ? ? ? ? ? ?
Review of the First Edition "The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods."—Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials.
Statistical Monitoring of Clinical Trials: Fundamentals for Investigators introduces the investigator and statistician to monitoring procedures in clinical research. Clearly presenting the necessary background with limited use of mathematics, this book increases the knowledge, experience, and intuition of investigations in the use of these important procedures now required by the many clinical research efforts. The author provides motivated clinical investigators the background, correct use, and interpretation of these monitoring procedures at an elementary statistical level. He defines terms commonly used such as group sequential procedures and stochastic curtailment in non-mathematical language and discusses the commonly used procedures of Pocock, O’Brien–Fleming, and Lan–DeMets. He discusses the notions of conditional power, monitoring for safety and futility, and monitoring multiple endpoints in the study. The use of monitoring clinical trials is introduced in the context of the evolution of clinical research and one chapter is devoted to the more recent Bayesian procedures. From the reviews: "The author has a wealth of experience in this area and this is demonstrated throughout the text with relevant poignant examples." Short Book Reviews of the ISI, June 2006
Statistical Design, Monitoring, and Analysis of Clinical Trials, Second Edition concentrates on the biostatistics component of clinical trials. This new edition is updated throughout and includes five new chapters. Developed from the authors’ courses taught to public health and medical students, residents, and fellows during the past 20 years, the text shows how biostatistics in clinical trials is an integration of many fundamental scientific principles and statistical methods. The book begins with ethical and safety principles, core trial design concepts, the principles and methods of sample size and power calculation, and analysis of covariance and stratified analysis. It then focuses on sequential designs and methods for two-stage Phase II cancer trials to Phase III group sequential trials, covering monitoring safety, futility, and efficacy. The authors also discuss the development of sample size reestimation and adaptive group sequential procedures, phase 2/3 seamless design and trials with predictive biomarkers, exploit multiple testing procedures, and explain the concept of estimand, intercurrent events, and different missing data processes, and describe how to analyze incomplete data by proper multiple imputations. This text reflects the academic research, commercial development, and public health aspects of clinical trials. It gives students and practitioners a multidisciplinary understanding of the concepts and techniques involved in designing, monitoring, and analyzing various types of trials. The book’s balanced set of homework assignments and in-class exercises are appropriate for students and researchers in (bio)statistics, epidemiology, medicine, pharmacy, and public health.
Includes bibliographical references and index.
Validation is a critical component to programming clinical trial analysis. Essential to effective validation is the programmer's understanding of the data with which they'll be working. If you don't understand how the data is arranged, the values that are reasonable for each variable, and the way the data should behave, you cannot ensure that the final result of your programming effort is complete or even appropriate. Therefore, to be a successful programmer in the pharmaceutical industry, you need to understand validation requirements and to learn how to make the code do the bulk of the work so that your programs are efficient as well as accurate. This indispensable guide focuses on validating programs written to support the clinical trial process from after the data collection stage to generating reports and submitting data and output to the Food and Drug Administration (FDA). Authors Carol Matthews and Brian Shilling provide practical examples, explanations for why different techniques are helpful, and tips for avoiding errors in your output. Topics addressed include: Validation and pharmaceutical industry overviews Documentation and maintenance requirements discussions General techniques to facilitate validation Data importing and exporting Common data types Reporting and statistics Validating Clinical Trial Data Reporting with SAS is designed for SAS programmers who are new to the pharmaceutical industry as well as for those seeking a good foundation for validation in the SAS programming arena. Readers should have a working knowledge of Base SAS and a basic understanding of programming tasks in the pharmaceutical industry.