Download Free Risk Assessment Of Radon In Drinking Water Book in PDF and EPUB Free Download. You can read online Risk Assessment Of Radon In Drinking Water and write the review.

The Safe Drinking Water Act directs the U.S. Environmental Protection Agency (EPA) to regulate the quality of drinking water, including its concentration of radon, an acknowledged carcinogen. This book presents a valuable synthesis of information about the total inhalation and ingestion risks posed by radon in public drinking water, including comprehensive reviews of data on the transfer of radon from water to indoor air and on outdoor levels of radon in the United States. It also presents a new analysis of a biokinetic model developed to determine the risks posed by ingestion of radon and reviews inhalation risks and the carcinogenesis process. The volume includes scenarios for quantifying the reduction in health risk that might be achieved by a program to reduce public exposure to radon. Risk Assessment of Radon in Drinking Water, reflecting research and analysis mandated by 1996 amendments to the Safe Drinking Water Act, provides comment on a variety of methods to reduce radon entry into homes and to reduce the concentrations of radon in indoor air and in water. The models, analysis, and reviews of literature contained in this book are intended to provide information that EPA will need to set a new maximum contaminant level, as it is required to do in 2000.
The Safe Drinking Water Act directs the U.S. Environmental Protection Agency (EPA) to regulate the quality of drinking water, including its concentration of radon, an acknowledged carcinogen. This book presents a valuable synthesis of information about the total inhalation and ingestion risks posed by radon in public drinking water, including comprehensive reviews of data on the transfer of radon from water to indoor air and on outdoor levels of radon in the United States. It also presents a new analysis of a biokinetic model developed to determine the risks posed by ingestion of radon and reviews inhalation risks and the carcinogenesis process. The volume includes scenarios for quantifying the reduction in health risk that might be achieved by a program to reduce public exposure to radon. Risk Assessment of Radon in Drinking Water, reflecting research and analysis mandated by 1996 amendments to the Safe Drinking Water Act, provides comment on a variety of methods to reduce radon entry into homes and to reduce the concentrations of radon in indoor air and in water. The models, analysis, and reviews of literature contained in this book are intended to provide information that EPA will need to set a new maximum contaminant level, as it is required to do in 2000.
This handbook focuses on residential radon exposure from a public health point of view and provides detailed recommendations on reducing health risks from radon and sound policy options for preventing and mitigating radon exposure. The material in the handbook reflects the epidemiological evidence that indoor radon exposure is responsible for a substantial number of lung cancers in the general population. Information is provided on the selection of devices to measure radon levels and on procedures for the reliable measurement of these levels. Discussed also are control options for radon in new dwellings, radon reduction in existing dwellings as well as assessment of the costs and benefits of different radon prevention and remedial actions. Also covered are radon risk communication strategies and organization of national radon programs.--Publisher's description.
This new book focuses on sampling and analysis, radon and radium in water supply wells, predictive models, geologic and hydrogeologic controls that influence radon occurrence, monitoring radon and other radioactivity from geologic sources and mining impacts on occurrence of radioactivity in ground water. Also discussed are occurrence, testing, treatment, and reduction of radon from groundwater. Because the most severe health hazard from indoor radioactivity results from inhalation of short-lived radioactive decay products of radon, the EPA scheduled a major conference early in 1987 on Radon, Radium, and Other Radioactivity in Ground Water-Hydrogeologic Impact and Application to Indoor Airborne Contamination. The result is this book.
Having safe drinking water is important to all Americans. The Environmental Protection Agency's decision in the summer of 2001 to delay implementing a new, more stringent standard for the maximum allowable level for arsenic in drinking water generated a great deal of criticism and controversy. Ultimately at issue were newer data on arsenic beyond those that had been examined in a 1999 National Research Council report. EPA asked the National Research Council for an evaluation of the new data available. The committee's analyses and conclusions are presented in Arsenic in Drinking Water: 2001 Update. New epidemiological studies are critically evaluated, as are new experimental data that provide information on how and at what level arsenic in drinking water can lead to cancer. The report's findings are consistent with those of the 1999 report that found high risks of cancer at the previous federal standard of 50 parts per billion. In fact, the new report concludes that men and women who consume water containing 3 parts per billion of arsenic daily have about a 1 in 1,000 increased risk of developing bladder or lung cancer during their lifetime.
This volume describes the methods used in the surveillance of drinking water quality in the light of the special problems of small-community supplies, particularly in developing countries, and outlines the strategies necessary to ensure that surveillance is effective.
In 2004, the WHO Guidelines for Drinking Water Quality recommended that water suppliers develop and implement "Water Safety Plans" (WSPs) in order to systematically assess and manage risks. Since this time, governments and regulators, water suppliers and practitioners have increasingly embraced this approach, but they have also requested further guidance. This much-anticipated workbook answers this call by describing how to develop and implement a WSP in clear and practical terms. Stepwise advice is provided through 11 learning modules, each representing a key step in the WSP development and implementation process: 1. Assemble the WSP team; 2. Describe the water supply system; 3. Identify hazards and hazardous events and assess the risks; 4. Determine and validate control measures, reassess and prioritise the risks; 5. Develop, implement and maintain an improvement/upgrade plan; 6. Define monitoring of the control measures; 7. Verify the effectiveness of the WSP; 8. Prepare management procedures; 9. Develop supporting programmes; 10. Plan and carry out periodic review of the WSP; 11. Revise the WSP following an incident ; Every Module is divided into three sections: 'Overview', 'Examples and Tools', and 'Case studies'. The overview section provides a brief introduction to the Module, including why it is important and how it fits into the overall WSP development and implementation process. It outlines key activities that should be carried out, lists typical challenges that may be encountered, and summarizes the essential outputs to be produced. The examples and tools section provides resources which could be adapted to support the development and implementation of WSPs. These resources include example tables and checklists, template forms, diagrams, or practical tips to help a WSP team address specific challenges. These are often example outputs and methodologies adapted from recent WSP experiences. Each Module concludes with case studies so the reader can benefit from lessons-learned from real-life experiences. They are intended to make WSP concepts more concrete and to help readers anticipate issues and challenges that may arise. The descriptions were drawn from WSP initiatives in Australia, the Latin American and the Caribbean region (LAC), and the United Kingdom.
With new regulations for radionuclides in drinking water, this volume will be valuable for understanding where radionuclides come from, how their prescence is determined, where humans come in contact with them, health effects consequences (both for individuals and communities), removal from water, disposal problems and cost implications.
Naturally occurring radionuclides are found throughout the earth's crust, and they form part of the natural background of radiation to which all humans are exposed. Many human activities-such as mining and milling of ores, extraction of petroleum products, use of groundwater for domestic purposes, and living in houses-alter the natural background of radiation either by moving naturally occurring radionuclides from inaccessible locations to locations where humans are present or by concentrating the radionuclides in the exposure environment. Such alterations of the natural environment can increase, sometimes substantially, radiation exposures of the public. Exposures of the public to naturally occurring radioactive materials (NORM) that result from human activities that alter the natural environment can be subjected to regulatory control, at least to some degree. The regulation of public exposures to such technologically enhanced naturally occurring radioactive materials (TENORM) by the US Environmental Protection Agency (EPA) and other regulatory and advisory organizations is the subject of this study by the National Research Council's Committee on the Evaluation of EPA Guidelines for Exposures to Naturally Occurring Radioactive Materials.