Download Free Risk Analysis Of Complex And Uncertain Systems Book in PDF and EPUB Free Download. You can read online Risk Analysis Of Complex And Uncertain Systems and write the review.

In Risk Analysis of Complex and Uncertain Systems acknowledged risk authority Tony Cox shows all risk practitioners how Quantitative Risk Assessment (QRA) can be used to improve risk management decisions and policies. It develops and illustrates QRA methods for complex and uncertain biological, engineering, and social systems – systems that have behaviors that are just too complex to be modeled accurately in detail with high confidence – and shows how they can be applied to applications including assessing and managing risks from chemical carcinogens, antibiotic resistance, mad cow disease, terrorist attacks, and accidental or deliberate failures in telecommunications network infrastructure. This book was written for a broad range of practitioners, including decision risk analysts, operations researchers and management scientists, quantitative policy analysts, economists, health and safety risk assessors, engineers, and modelers.
Intelligent Coordinated Control of Complex Uncertain Systems for Power Distribution and Network Reliability discusses the important topics revolving around the control of complex uncertain systems using the intelligent coordination control mechanism, a topic that has become the research focus of current control and computer fields. The book provides theoretical guidance for power distribution network reliability analysis, focusing on practical problems and algorithms within the field. - Provides effective solutions for complex control systems - Presents theoretical guidance for power distribution network reliability analysis - Focuses on practical problems and algorithms
A timeless classic of economic theory that remains fascinating and pertinent today, this is Frank Knight's famous explanation of why perfect competition cannot eliminate profits, the important differences between "risk" and "uncertainty," and the vital role of the entrepreneur in profitmaking. Based on Knight's PhD dissertation, this 1921 work, balancing theory with fact to come to stunning insights, is a distinct pleasure to read. FRANK H. KNIGHT (1885-1972) is considered by some the greatest American scholar of economics of the 20th century. An economics professor at the University of Chicago from 1927 until 1955, he was one of the founders of the Chicago school of economics, which influenced Milton Friedman and George Stigler.
This book integrates multiple criteria concepts and methods for problems within the Risk, Reliability and Maintenance (RRM) context. The concepts and foundations related to RRM are considered for this integration with multicriteria approaches. In the book, a general framework for building decision models is presented and this is illustrated in various chapters by discussing many different decision models related to the RRM context. The scope of the book is related to ways of how to integrate Applied Probability and Decision Making. In Applied Probability, this mainly includes: decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In Decision Making, it includes a broad range of topics in MCDM (Multi-Criteria Decision Making) and MCDA (Multi-Criteria Decision Aiding; also known as Multi-Criteria Decision Analysis). In addition to decision analysis, some of the topics related to Mathematical Programming area are briefly considered, such as multiobjective optimization, since methods related to these topics have been applied to the context of RRM. The book addresses an innovative treatment for the decision making in RRM, thereby improving the integration of fundamental concepts from the areas of both RRM and decision making. This is accomplished by presenting an overview of the literature on decision making in RRM. Some pitfalls of decision models when applying them to RRM in practice are discussed and guidance on overcoming these drawbacks is offered. The procedure enables multicriteria models to be built for the RRM context, including guidance on choosing an appropriate multicriteria method for a particular problem faced in the RRM context. The book also includes many research advances in these topics. Most of the multicriteria decision models that are described are specific applications that have been influenced by this research and the advances in this field. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis is implicitly structured in three parts, with 12 chapters. The first part deals with MCDM/A concepts methods and decision processes. The second part presents the main concepts and foundations of RRM. Finally the third part deals with specific decision problems in the RRM context approached with MCDM/A models.
Safety and Reliability – Safe Societies in a Changing World collects the papers presented at the 28th European Safety and Reliability Conference, ESREL 2018 in Trondheim, Norway, June 17-21, 2018. The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk management Safety and Reliability – Safe Societies in a Changing World will be invaluable to academics and professionals working in a wide range of industrial and governmental sectors: offshore oil and gas, nuclear engineering, aeronautics and aerospace, marine transport and engineering, railways, road transport, automotive engineering, civil engineering, critical infrastructures, electrical and electronic engineering, energy production and distribution, environmental engineering, information technology and telecommunications, insurance and finance, manufacturing, marine transport, mechanical engineering, security and protection, and policy making.
This book is the first to combine principles from analytics, complex systems theory, multi-disciplinary diagnostics and sport performance analysis. It considers athletes, teams, and sport organizations in individual and team games as complex systems, and demonstrates how complexity studies can enrich analytics and give us a more sophisticated understanding of the causalities of winning and losing in sports. Part I introduces the basic categories of analytics and their uses in elite sport. Part II presents an original conception of sport analytics both as a complex of different kinds of processes and as a complexity-adapted view of human systems acting in sport performance and management. Part III considers the main principles of complex sport analytics, expanding the prism of complexity to include all levels of a sport organization from athletes, coaches and trainers to top decision makers, and suggests practical applications and simulations for cases of both individual and team sports. This is illuminating reading for any advanced student, researcher or practitioner working in sport analytics, performance analysis, coaching science or sport management.
The book outlines selected projects conducted under the supervision of the author. Moreover, it discusses significant relations between Interactive Granular Computing (IGrC) and numerous dynamically developing scientific domains worldwide, along with features characteristic of the author’s approach to IGrC. The results presented are a continuation and elaboration of various aspects of Wisdom Technology, initiated and developed in cooperation with Professor Andrzej Skowron. Based on the empirical findings from these projects, the author explores the following areas: (a) understanding the causes of the theory and practice gap problem (TPGP) in complex systems engineering (CSE); (b) generalizing computing models of complex adaptive systems (CAS) (in particular, natural computing models) by constructing an interactive granular computing (IGrC) model of networks of interrelated interacting complex granules (c-granules), belonging to a single agent and/or to a group of agents; (c) developing methodologies based on the IGrC model to minimize the negative consequences of the TPGP. The book introduces approaches to the above issues, using the proposed IGrC model. In particular, the IGrC model refers to the key mechanisms used to control the processes related to the implementation of CSE projects. One of the main aims was to develop a mechanism of IGrC control over computations that model a project’s implementation processes to maximize the chances of its success, while at the same time minimizing the emerging risks. In this regard, the IGrC control is usually performed by means of properly selected and enforced (among project participants) project principles. These principles constitute examples of c-granules, expressed by complex vague concepts (represented by c-granules too). The c-granules evolve with time (in particular, the meaning of the concepts is also subject of change). This methodology is illustrated using project principles applied by the author during the implementation of the POLTAX, AlgoTradix, Merix, and Excavio projects outlined in the book.
What are the principles that keep our society together? This question is even more difficult to answer than the long-standing question, what are the forces that keep our world together. However, the social challenges of humanity in the 21st century ranging from the financial crises to the impacts of globalization, require us to make fast progress in our understanding of how society works, and how our future can be managed in a resilient and sustainable way. This book can present only a few very first steps towards this ambitious goal. However, based on simple models of social interactions, one can already gain some surprising insights into the social, ``macro-level'' outcomes and dynamics that is implied by individual, ``micro-level'' interactions. Depending on the nature of these interactions, they may imply the spontaneous formation of social conventions or the birth of social cooperation, but also their sudden breakdown. This can end in deadly crowd disasters or tragedies of the commons (such as financial crises or environmental destruction). Furthermore, we demonstrate that classical modeling approaches (such as representative agent models) do not provide a sufficient understanding of the self-organization in social systems resulting from individual interactions. The consideration of randomness, spatial or network interdependencies, and nonlinear feedback effects turns out to be crucial to get fundamental insights into how social patterns and dynamics emerge. Given the explanation of sometimes counter-intuitive phenomena resulting from these features and their combination, our evolutionary modeling approach appears to be powerful and insightful. The chapters of this book range from a discussion of the modeling strategy for socio-economic systems over experimental issues up the right way of doing agent-based modeling. We furthermore discuss applications ranging from pedestrian and crowd dynamics over opinion formation, coordination, and cooperation up to conflict, and also address the response to information, issues of systemic risks in society and economics, and new approaches to manage complexity in socio-economic systems. Selected parts of this book had been previously published in peer reviewed journals.
This handbook offers a comprehensive overview of cloud computing security technology and implementation while exploring practical solutions to a wide range of cloud computing security issues. As more organizations use cloud computing and cloud providers for data operations, the need for proper security in these and other potentially vulnerable areas has become a global priority for organizations of all sizes. Research efforts from academia and industry, as conducted and reported by experts in all aspects of security related to cloud computing, are gathered within one reference guide. Features • Covers patching and configuration vulnerabilities of a cloud server • Evaluates methods for data encryption and long-term storage in a cloud server • Demonstrates how to verify identity using a certificate chain and how to detect inappropriate changes to data or system configurations John R. Vacca is an information technology consultant and internationally known author of more than 600 articles in the areas of advanced storage, computer security, and aerospace technology. John was also a configuration management specialist, computer specialist, and the computer security official (CSO) for NASA’s space station program (Freedom) and the International Space Station Program from 1988 until his retirement from NASA in 1995.