Download Free Risk Analysis And Reliabilty Improvement Of Mechanistic Empirical Pavement Design Book in PDF and EPUB Free Download. You can read online Risk Analysis And Reliabilty Improvement Of Mechanistic Empirical Pavement Design and write the review.

Reliability used in the Mechanistic Empirical Pavement Design Guide (MEPDG) is a congregated indicator defined as the probability that each of the key distress types and smoothness will be less than a selected critical level over the design period. For such a complex system as the MEPDG which does not have closed-form design equations, classic reliability methods are not applicable. A robust reliability analysis can rely on Monte Carlo Simulation (MCS). The ultimate goal of this study was to improve the reliability model of the MEPDG using surrogate modeling techniques and Monte Carlo simulation. To achieve this goal, four tasks were accomplished in this research. First, local calibration using 38 pavement sections was completed to reduce the system bias and dispersion of the nationally calibrated MEPDG. Second, uncertainty and risk in the MEPDG were identified using Hierarchical Holographic Modeling (HHM). To determine the critical factors affecting pavement performance, this study applied not only the traditional sensitivity analysis method but also the risk assessment method using the Analytic Hierarchy Process (AHP). Third, response surface models were built to provide a rapid solution of distress prediction for alligator cracking, rutting and smoothness. Fourth, a new reliability model based on Monte Carlo Simulation was proposed. Using surrogate models, 10,000 Monte Carlo simulations were calculated in minutes to develop the output ensemble, on which the predicted distresses at any reliability level were readily available. The method including all data and algorithms was packed in a user friendly software tool named ReliME. Comparison between the AASHTO 1993 Guide, the MEPDG and ReliME was presented in three case studies. It was found that the smoothness model in MEPDG had an extremely high level of variation. The product from this study was a consistent reliability model specific to local conditions, construction practices and specifications. This framework also presented the feasibility of adopting Monte Carlo Simulation for reliability analysis in future mechanistic empirical pavement design software.
The Mechanistic-Empirical Pavement Design Guide (MEPDG) represents the state-of-art procedure for pavement design. However, after more than a decade since its publication, the number of agencies that have reported entirely adopting this design system is small. Among the many causes of this phenomenon, the poor predictive accuracy of the performance prediction models is considered the most crucial one. To improve the accuracy of performance predicted by the MEPDG, a preliminary calibration was first conducted for these models with data from the pavement management system (PMS) of Tennessee, and then employed various machine learning algorithms for further improvements. Also, an approach for estimating the modulus of existing asphalt pavement was proposed to enhance the reliability of rehabilitation analysis with the MEPDG. The transfer functions for alligator cracking and longitudinal cracking were validated and calibrated with data collected from the PMS of the state of Tennessee. The results of calibration efforts showed that after calibration, both the bias and variance of the prediction were significantly reduced. It was noted that although local calibration helped improve the accuracy of the transfer functions, the extent of improvement is limited. An observation of the performance models revealed that they were either inadequately formulated or too inflexible to capture sufficient information from the inputs. To further improve the predictive performance of the transfer functions in the MEPDG, several machine learning algorithms were employed including the gradient boosted model (GBM) for fatigue cracking, deep neural networks for rutting, and random forest for IRI. Using the determination of coefficient (R2) and root mean squared error (RMSE) as the measure of model performance, compared with the global transfer functions, the models developed achieved significantly better predictive performance. The results from the regularized regression model indicated that, compared with the model using deflection basins parameters (DBPs), the one without DBPs could still generate modulus prediction of reasonable accuracy. Rehabilitation analyses in the MEPDG with the estimated modulus also contributed to the improved accuracy in pavement performance prediction.
This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.
A mechanistic-empirical (ME) pavement design procedure allows for analyzing and selecting pavement structures based on predicted distress progression resulting from stresses and strains within the pavement over its design life. The Virginia Department of Transportation (VDOT) has been working toward implementing ME design by characterizing traffic and materials inputs, training with the models and design software, and analyzing current pavement designs in AASHTOware Pavement ME Design software. This study compared the measured performance of asphalt and continuously reinforced concrete pavements (CRCP) from VDOTs Pavement Management System (PMS) records to the predicted performance in AASHTOware Pavement ME Design. Model coefficients in the software were adjusted to match the predicted asphalt pavement permanent deformation, asphalt bottom-up fatigue cracking, and CRCP punchout outputs to the measured values from PMS records. Values for reliability, design life inputs, and distress limits were identified as a starting point for VDOT to consider when using AASHTOware Pavement ME Design through consideration of national guidelines, existing VDOT standards, PMS rating formulas, typical pavement performance at time of overlay, and the data used for local calibration. The model calibration coefficients and design requirement values recommended in this study can be used by VDOT with AASHTOware Pavement ME Design as a starting point to implement the software for design, which should allow for more optimized pavement structures and improve the long-term performance of pavements in Virginia.