Robert Gordon
Published: 2014-05-10
Total Pages: 396
Get eBook
Ring Theory provides information pertinent to the fundamental aspects of ring theory. This book covers a variety of topics related to ring theory, including restricted semi-primary rings, finite free resolutions, generalized rational identities, quotient rings, idealizer rings, identities of Azumaya algebras, endomorphism rings, and some remarks on rings with solvable units. Organized into 24 chapters, this book begins with an overview of the characterization of restricted semi-primary rings. This text then examines the case where K is a Hensel ring and A is a separable algebra. Other chapters consider establishing the basic properties of the four classes of projective modules, with emphasis on the finitely generated case. This book discusses as well the non-finitely generated cases and studies infinitely generated projective modules. The final chapter deals with abelian groups G that are injective when viewed as modules over their endomorphism rings E(G). This book is a valuable resource for mathematicians.