Download Free Ring Theory Ii Book in PDF and EPUB Free Download. You can read online Ring Theory Ii and write the review.

A clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product, Tensor product and rings of fractions, followed by a description of free rings. Readers are assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index
This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. "In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease."—A. Rosenberg, Mathematical Reviews
The book is mainly concerned with the theory of rings in which both maximal and minimal conditions hold for ideals (except in the last chapter, where rings of the type of a maximal order in an algebra are considered). The central idea consists of representing rings as rings of endomorphisms of an additive group, which can be achieved by means of the regular representation.
The theory of rings of quotients has its origin in the work of (j). Ore and K. Asano on the construction of the total ring of fractions, in the 1930's and 40's. But the subject did not really develop until the end of the 1950's, when a number of important papers appeared (by R. E. Johnson, Y. Utumi, A. W. Goldie, P. Gabriel, J. Lambek, and others). Since then the progress has been rapid, and the subject has by now attained a stage of maturity, where it is possible to make a systematic account of it (which is the purpose of this book). The most immediate example of a ring of quotients is the field of fractions Q of a commutative integral domain A. It may be characterized by the two properties: (i) For every qEQ there exists a non-zero SEA such that qSEA. (ii) Q is the maximal over-ring of A satisfying condition (i). The well-known construction of Q can be immediately extended to the case when A is an arbitrary commutative ring and S is a multiplicatively closed set of non-zero-divisors of A. In that case one defines the ring of fractions Q = A [S-l] as consisting of pairs (a, s) with aEA and SES, with the declaration that (a, s)=(b, t) if there exists UES such that uta = usb. The resulting ring Q satisfies (i), with the extra requirement that SES, and (ii).
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.