Download Free Rigorous Mathematical Thinking Book in PDF and EPUB Free Download. You can read online Rigorous Mathematical Thinking and write the review.

This book demonstrates how rigorous mathematical thinking can be fostered through the development of students' cognitive tools and operations. This approach seems to be particularly effective with socially disadvantaged and culturally different students. The authors argue that children's cognitive functions cannot be viewed as following a natural maturational path: they should be actively constructed during the educational process. The Rigorous Mathematical Thinking (RMT) model is based on two major theoretical approaches – Vygotsky's theory of psychological tools and Feuerstein's concept of mediated learning experience. The book starts with general cognitive tools that are essential for all types of problem solving and then moves to mathematically specific cognitive tools and methods for utilizing these tools for mathematical conceptual formation. The application of the RMT model in various urban classrooms demonstrates how mathematics education standards can be reached even by the students with a history of educational failure who were considered hopeless underachievers.
"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
In this country we have done a poor job of helping students come to see the wonder, beauty and power of mathematics. Standards can be brought into the picture, but unless we think about what it means to truly engage students in mathematics we will continue to be unsuccessful. The goal of this book is to begin to change the way students experience mathematics in the middle and high school classrooms. In this book you will find a theoretical basis for this approach to teaching mathematics, multiple guides and questions for teachers to think about in relation to their everyday teaching, and over 30 examples of problems, lessons, tasks, and projects that been used effectively with urban students.
This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.
During his years working as an instructional coach for a national network of schools, Geoff Krall had the chance to witness several inspirational moments when math class comes alive for middle or high school students - when it is challenging but also fun, creative, and interactive. In Necessary Conditions: Teaching Secondary Math with Academic Safety, Quality Tasks, and Effective Facilitation, Krall documents the essential ingredients that produce these sorts of moments on a regular basis and for all students. They are Academic Safety, Quality Tasks, and Effective Facilitation. Academic Safety: Krall implements equitable classroom experiences that help fight stigmas associated with race and gender in schools. This allows students to feel socially and emotionally secure while nurturing their identities as mathematicians and increasing engagement during classroom discussions Quality Tasks: Teachers can adapt or create dynamic, student-centered lessons that break down math into small, manageable sections, removing the frustrations felt by students who aren't considered math people Effective Facilitation: This book shows how to incorporate teaching moves and math routines designed for engagement, persistence, and interactivity. Teachers can allow students to explore safely while maintaining consistent classroom expectations. "My work as a math instructional coach for a network of schools has afforded me the unique opportunity to visit exceptional teachers across the country, documenting their tasks, teaching moves, and academically safe learning environments. You'll experience dispatches from these effective classrooms in which we'll observe how teachers attend to all three elements that make up the ecosystem." - Geoff Krall from his book, Necessary Conditions.
Students must prove all of the theorems in this undergraduate-level text, which features extensive outlines to assist in study and comprehension. Thorough and well-written, the treatment provides sufficient material for a one-year undergraduate course. The logical presentation anticipates students' questions, and complete definitions and expositions of topics relate new concepts to previously discussed subjects. Most of the material focuses on point-set topology with the exception of the last chapter. Topics include sets and functions, infinite sets and transfinite numbers, topological spaces and basic concepts, product spaces, connectivity, and compactness. Additional subjects include separation axioms, complete spaces, and homotopy and the fundamental group. Numerous hints and figures illuminate the text. Dover (2014) republication of the edition originally published by The Williams & Wilkins Company, Baltimore, 1975. See every Dover book in print at www.doverpublications.com
Bring math to life with routines that are academically rigorous, standards-based, and engaging! Go beyond circling ABCD on your bell ringers and do nows and get your students reasoning, modeling, and communicating about math every day! In this new book from bestselling author and consultant Dr. Nicki Newton, you’ll learn how to develop effective daily routines to improve students’ thinking, reasoning, and questioning about math. The book provides a wide variety of rigorous, high-interest routines and explains how to rotate and implement them into your curriculum. Inside, you’ll find: Questioning techniques that encourage students to think beyond the "right vs. wrong" continuum Tips for building a math-learning environment that is friendly and supportive of all students Math vocabulary exercises that are meaningful and fun An assortment of innovative daily activities, including "Fraction of the Day," "Truth or Fib," "Find and Fix the Error," "Guess My Number," "What Doesn’t Belong?" and many, many more. Each chapter offers examples, charts, and tools that you can use immediately. With these resources and the practical advice throughout the book, you’ll increase students’ ability to understand math on a deeper level while keeping them engaged in their own learning processes.
2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called "How to Become a Good Guesser."-From the Dust Jacket.