Download Free Rigid Polymer Networks Book in PDF and EPUB Free Download. You can read online Rigid Polymer Networks and write the review.

This volume of the series gives an overview on Rigid Polymer Networks written by two reputed experts in the field. A broad range of densely-branched, highly-crosslinked aromatic networks and gels of increasing rigidity are discussed, with special emphasis on aromatic rigid liquid-crystal polymer networks. The synthetic procedures to create the networks are briefly described and extensively referenced. Features of one-step and two-step rigid networks in their pre-gel and post-gel states are discussed. Some first steps are then taken in the theoretical treatment of LCP networks with long aromatic segments of decreasing stiffness. The current state of theory dealing with the broader class of highly-crosslinked rigid aromatic networks and gels is finally mentioned.
This volume of the series gives an overview on Rigid Polymer Networks written by two reputed experts in the field. A broad range of densely-branched, highly-crosslinked aromatic networks and gels of increasing rigidity are discussed, with special emphasis on aromatic rigid liquid-crystal polymer networks. The synthetic procedures to create the networks are briefly described and extensively referenced. Features of one-step and two-step rigid networks in their pre-gel and post-gel states are discussed. Some first steps are then taken in the theoretical treatment of LCP networks with long aromatic segments of decreasing stiffness. The current state of theory dealing with the broader class of highly-crosslinked rigid aromatic networks and gels is finally mentioned.
Liquid crystal displays were discovered in the 1960s, and today we continue to enjoy the benefits of that fundamental discovery and its translation into a wide variety of products. Like liquid crystals, polymers are unusual materials, and have similarly enjoyed a great deal of research attention because of their vast applications and uses and compl
Polymer science is a technology-driven science. More often than not, technological breakthroughs opened the gates to rapid fundamental and theoretical advances, dramatically broadening the understanding of experimental observations, and expanding the science itself. Some of the breakthroughs involved the creation of new materials. Among these one may enumerate the vulcanization of natural rubber, the derivatization of cellulose, the giant advances right before and during World War II in the preparation and characterization of synthetic elastomers and semi crystalline polymers such as polyesters and polyamides, the subsequent creation of aromatic high-temperature resistant amorphous and semi-crystal line polymers, and the more recent development of liquid-crystalline polymers mostly with n~in-chain mesogenicity. other breakthroughs involve the development of powerful characterization techniques. Among the recent ones, the photon correlation spectroscopy owes its success to the advent of laser technology, small angle neutron scattering evolved from n~clear reactors technology, and modern solid-state nuclear magnetic resonance spectroscopy exists because of advances in superconductivity. The growing need for high modulus, high-temperature resistant polymers is opening at present a new technology, that of more or less rigid networks. The use of such networks is rapidly growing in applications where they are used as such or where they serve as matrices for fibers or other load bearing elements. The rigid networks are largely aromatic. Many of them are prepared from multifunctional wholly or almost-wholly aromatic kernels, while others contain large amount of stiff difunctional residus leading to the presence of many main-chain "liquid-crystalline" segments in the "infinite" network.
This book examines the current state of the art, new challenges, opportunities, and applications of IPNs. With contributions from experts across the globe, this survey is an outstanding resource reference for anyone involved in the field of polymer materials design for advanced technologies. • Comprehensively summarizes many of the recent technical research accomplishments in the area of micro and nanostructured Interpenetrating Polymer Networks • Discusses various aspects of synthesis, characterization, structure, morphology, modelling, properties, and applications of IPNs • Describes how nano-structured IPNs correlate their multiscale structure to their properties and morphologies • Serves as a one-stop reference resource for important research accomplishments in the area of IPNs and nano-structured polymer systems • Includes chapters from leading researchers in the IPN field from industry, academy, government and private research institutions