Download Free Rice Journal And Industrial Review Book in PDF and EPUB Free Download. You can read online Rice Journal And Industrial Review and write the review.

Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world's population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. - Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses - Provides practical insights into a wide range of management and crop improvement practices - Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology
The large quantity of waste generated from agricultural and food production remains a great challenge and an opportunity for the food industry. As there are numerous risks associated with waste for humans, animals and the environment, billions of dollars are spent on the treatment of agricultural and food waste. Therefore, the utilisation of bioactive compounds isolated from waste not only could reduce the risks and the costs for treatment of waste, but also could potentially add more value for agricultural and food production. This book provides comprehensive information related to extraction and isolation of bioactive compounds from agricultural and food production waste for utilisation in the food, cosmetic and pharmaceutical industries. The topics range from an overview on challenges and opportunities related to agricultural and food waste, the bioactive compounds in the waste, the techniques used to analyse, extract and isolate these compounds to several specific examples for potential utilisation of waste from agricultural and food industry. This book also further discusses the potential of bioactives isolated from agricultural and food waste being re-utilised in the food, cosmetic and pharmaceutical industries. It is intended for students, academics, researchers and professionals who are interested in or associated with agricultural and food waste.
Industrial residues are obtained from all treatments of raw materials in industry during the process of mining, raw materials treatment and final usage. During these processes of enrichment, optimization and utilization of raw materials only part of the original material can be used for the dedicated application and some left-over parts remain. This contribution focuses on residues like mining overburdens, ore residues and ore processing residues like slags, but also on incineration ashes and water purification muds. Natural materials like pozzolanes, due to their potential of CO2-reduction, are also included. Based on this knowledge secondary reusable materials due to their chemical, physical and mineralogical properties can be identified. Also different characterization methods for analysing the potential for further application of these residues are included.
The sustainability of any process lies in the eco-friendly and economical production of products for applications. Bio-based materials are emerging as raw materials for different products and applications. The book covers cellulose, chitosan, silk, collagen and gelatin bio-based materials. It describes their use in biomedical applications, such as orthopaedic implant, drug delivery, tissue culture, biosensor and engineering applications such as fuel cells, energy storage and packaging. It concludes with the use of bio-based materials as precursors for biorefinery, biolubricants, membranes and adsorbents.