Download Free Rice Breeding With Induced Mutations Iii Book in PDF and EPUB Free Download. You can read online Rice Breeding With Induced Mutations Iii and write the review.

This book is open access under a CC BY-NC 2.5 license. This book offers 19 detailed protocols on the use of induced mutations in crop breeding and functional genomics studies, which cover topics including chemical and physical mutagenesis, phenotypic screening methods, traditional TILLING and TILLING by sequencing, doubled haploidy, targeted genome editing, and low-cost methods for the molecular characterization of mutant plants that are suitable for laboratories in developing countries. The collection of protocols equips users with the techniques they need in order to start a program on mutation breeding or functional genomics using both forward and reverse-genetic approaches. Methods are provided for seed and vegetatively propagated crops (e.g. banana, barley, cassava, jatropha, rice) and can be adapted for use in other species.
This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.
Abstract: This book presents contemporary information on mutagenesis in plants and its applications in plant breeding and research. The topics are classified into sections focusing on the concepts, historical development and genetic basis of plant mutation breeding (chapters 1-6); mutagens and induced mutagenesis (chapters 7-13); mutation induction and mutant development (chapters 14-23); mutation breeding (chapters 24-34); or mutations in functional genomics (chapters 35-41). This book is an essential reference for those who are conducting research on mutagenesis as an approach to improving or modifying a trait, or achieving basic understanding of a pathway for a trait --.
Induced mutations are an important complementary and often unique approach to plant breeding, as has been repeatedly shown in a number of crop plants, including rice.
Mutation breeding has been introduced into modern plant breeding in the early 1940's. In spite of pessimistic predictions, the application of experimental mutagenesis has led to encouraging results demonstrating that mutation breeding is a well-functioning method in many crops. So far, more than 500 varieties, developed by means of induced mutations, have been officially released; others have been approved for registration. Many mutants with characters of agronomic interest cannot be utilized directly because of their unsatisfying yielding capacities, or of other negative traits which are partly due to the pleiotropic action of the mutant genes. Sometimes their negative selection value can be overcome by transferring them into the genomes of other varieties. According to experience available, the efficiency of mutant genes can conSiderably vary depending on the genotypic background in which they become effective. The interactions between mutant genes and genotypic back ground cannot be predicted. Therefore, mutants with valuable traits should be crossed with many varieties and strains in order to discern positive and negative interactions. In this way, genotypes can be selected in which the mutant gene is able to express its action without showing negative by-effects. This procedure has been used for about 10 years by combining the methods of mutation and crossbreeding. Mutation breeding is predominantly used in annual diploid and allo polyploid self-fertilizing crops, while it causes much more difficulties in cross-pollinating species.
Genetic variability is an important parameter for plant breeders in any con ventional crop improvement programme. Very often the desired variation is un available in the right combination, or simply does not exist at all. However, plant breeders have successfully recombined the desired genes from cultivated crop gerrnplasm and related wild species by sexual hybridization, and have been able to develop new cultivars with desirable agronomie traits, such as high yield, disease, pest, and drought resistance. So far, conventional breeding methods have managed to feed the world's ever-growing population. Continued population growth, no further scope of expanding arable land, soil degradation, environ mental pollution and global warrning are causes of concern to plant biologists and planners. Plant breeders are under continuous pressure to improve and develop new cultivars for sustainable food production. However, it takes several years to develop a new cultivar. Therefore, they have to look for new technologies, which could be combined with conventional methods to create more genetic variability, and reduce the time in developing new cultivars, with early-maturity, and improved yield. The first report on induced mutation of a gene by HJ. Muller in 1927 was a major mi1estone in enhancing variation, and also indicated the potential applica tions of mutagenesis in plant improvement. Radiation sources, such as X-rays, gamma rays and fast neutrons, and chemical mutagens (e. g. , ethyl methane sulphonate) have been widely used to induce mutations.
This open access book presents simple, robust pre-field screening protocols that allow plant breeders to screen for enhanced tolerance to heat stress in rice. Two critical heat-sensitive stages in the lifecycle of the rice crop are targeted – the seedling and flowering stages – with screening based on simple phenotypic responses. The protocols are based on the use of a hydroponics system and/or pot experiments in a glasshouse in combination with a controlled growth chamber where the heat stress treatment is applied. The protocols are designed to be effective, simple, reproducible and user-friendly. The protocols will enable plant breeders to effectively reduce the number of plants from a few thousands to less than 100 candidate individual mutants or lines in a greenhouse/growth chamber, which can then be used for further testing and validation in the field conditions. The methods can also be used to classify rice genotypes according to their heat tolerance characteristics. Thus, different types of heat stress tolerance mechanisms can be identified, presenting opportunities for pyramiding different (mutant) sources of heat stress tolerance.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.