Download Free Rhodium Catalysis Book in PDF and EPUB Free Download. You can read online Rhodium Catalysis and write the review.

The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbrev iated as Top Organomet Chem and cited as a journal.
An essential reference to the highly effective reactions applied to modern organic synthesis Rhodium complexes are one of the most important transition metals for organic synthesis due to their ability to catalyze a variety of useful transformations. Rhodium Catalysis in Organic Synthesis explores the most recent progress and new developments in the field of catalytic cyclization reactions using rhodium(I) complexes and catalytic carbon-hydrogen bond activation reactions using rhodium(II) and rhodium(III) complexes. Edited by a noted expert in the field with contributions from a panel of leading international scientists, Rhodium Catalysis in Organic Synthesis presents the essential information in one comprehensive volume. Designed to be an accessible resource, the book is arranged by different reaction types. All the chapters provide insight into each transformation and include information on the history, selectivity, scope, mechanism, and application. In addition, the chapters offer a summary and outlook of each transformation. This important resource: -Offers a comprehensive review of how rhodium complexes catalyze a variety of highly useful reactions for organic synthesis (e.g. coupling reactions, CH-bond functionalization, hydroformylation, cyclization reactions and others) -Includes information on the most recent developments that contain a range of new, efficient, elegant, reliable and useful reactions -Presents a volume edited by one of the international leading scientists working in the field today -Contains the information that can be applied by researchers in academia and also professionals in pharmaceutical, agrochemical and fine chemical companies Written for academics and synthetic chemists working with organometallics, Rhodium Catalysis in Organic Synthesis contains the most recent information available on the developments and applications in the field of catalytic cyclization reactions using rhodium complexes.
Rhodium has proven to be an extremely useful metal due to its ability to catalyze an array of synthetic transformations, with quite often-unique selectivity. Hydrogenation, C-H activation, allylic substitution, and numerous other reactions are catalyzed by this metal, which presumably accounts for the dramatic increase in the number of articles that have recently emerged on the topic. P. Andrew Evans, the editor of this much-needed book, has assembled an internationally renowned team to present the first comprehensive coverage of this important area. The book features contributions from leaders in the field of rhodium-catalyzed reactions, and thereby provides a detailed account of the most current developments, including: Rhodium-Catalyzed Asymmetric Hydrogenation (Zhang) Rhodium-Catalyzed Hydroborations and Related Reactions (Brown) Rhodium-Catalyzed Asymmetric Addition of Organometallic Reagents to Electron Deficient Olefins (Hayashi) Recent Advances in Rhodium(I)-Catalyzed Asymmetric Olefin Isomerization and Hydroacylation Reactions (Fu) Stereoselective Rhodium(I)-Catalyzed Hydroformylation and Silylformylation Reactions and Their Application to Organic Synthesis (Leighton) Carbon-Carbon Bond-Forming Reactions Starting from Rh-H or Rh-Si Species (Matsuda) Rhodium(I)-Catalyzed Cycloisomerization and Cyclotrimerization Reactions (Ojima) The Rhodium(I)-Catalyzed Alder-ene Reaction (Brummond) Rhodium-Catalyzed Nucleophilic Ring Cleaving Reactions of Allylic Ethers and Amines (Fagnou) Rhodium(I)-Catalyzed Allylic Substitution Reactions and their Applications to Target Directed Synthesis (Evans) Rhodium(I)-Catalyzed [2+2+1] and [4+1] Carbocyclization Reactions (Jeong) Rhodium(I)-Catalyzed [4+2] and [4+2+2] Carbocyclizations (Robinson) Rhodium(I)-Catalyzed [5+2], [6+2], and [5+2+1] Cycloadditions: New Reactions for Organic Synthesis (Wender) Rhodium(II)-Stabilized Carbenoids Containing both Donor and Acceptor Substituents (Davies) Chiral Dirhodium(II)Carboxamidates for Asymmetric Cyclopropanation and Carbon-Hydrogen Insertion Reactions (Doyle) Cyclopentane Construction by Rhodium(II)-Mediated Intramolecular C-H Insertion (Taber) Rhodium(II)-Catalyzed Oxidative Amination (DuBois) Rearrangement Processes of Oxonium and Ammonium Ylides Formed by Rhodium(II)-Catalyzed Carbene-Transfer (West) Rhodium(II)-Catalyzed 1,3-Dipolar Cycloaddition Reactions (Austin) "Modern Rhodium-Catalyzed Organic Reactions" is an essential reference text for researchers at all levels in the general area of organic chemistry. This book provides an invaluable overview of the most significant developments in this important area of research, and will no doubt be an essential text for researchers at academic institutions and professionals at pharmaceutical/agrochemical companies.
In the last decade there have been numerous advances in the area of rhodium-catalyzed hydroformylation, such as highly selective catalysts of industrial importance, new insights into mechanisms of the reaction, very selective asymmetric catalysts, in situ characterization and application to organic synthesis. The views on hydroformylation which still prevail in the current textbooks have become obsolete in several respects. Therefore, it was felt timely to collect these advances in a book. The book contains a series of chapters discussing several rhodium systems arranged according to ligand type, including asymmetric ligands, a chapter on applications in organic chemistry, a chapter on modern processes and separations, and a chapter on catalyst preparation and laboratory techniques. This book concentrates on highlights, rather than a concise review mentioning all articles in just one line. The book aims at an audience of advanced students, experts in the field, and scientists from related fields. The didactic approach also makes it useful as a guide for an advanced course.
This book offers a comprehensive overview of recent theoretical studies on rhodium-catalyzed C-H functionalization, a topic that has attracted considerable attention over the years. It includes a brief experimental history, elementary reactions, and theoretical perspectives and describes in detail recent advanced computational studies on different types of Rh-catalyzed C-H functionalization, the underlying mechanisms, and the origin of regioselectivity in a series of such reactions. Providing examples shows readers how to use theoretical tools to solve problems related to mechanisms of organometallic reactions. As such, the book is an interesting and useful resource for a wide readership in various fields involving synthetic organic, organometallic, and catalysis reactions.
Organometallic Chemistry of Five-Membered Heterocycles explores the synthesis, coordination modes, reactivity of coordinated five-membered monoheterocycles, and organometallic complexes of their numerous derivatives, including chelating ligands, oligomers, and macrocycles. Beginning with the introduction of organometallic compounds, this book dives deep into the reactivity of coordinated five-membered monoheterocycles and the derivatives of fundamental ligands. This book is an ideal reference for researchers working in organometallic, heterocyclic, materials, or organic chemistry, and catalysis. The readers will gain a comprehensive understanding of modern synthetic methods, reactivity trends of heteroaromatic ligands, and the methods of modern materials construction.
Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.
A comprehensive and up-to-date overview of alkyne chemistry, taking into account the progress made over the last two decades. The experienced editors are renowned world leaders in the field, while the list of contributors reads like a "Who's Who" of synthetic organic chemistry. The result is a valuable reference not only for organic chemists at universities and in the chemical industry, but also for biologists and material scientists involved in the modern synthesis of organic compounds and materials.
Volume 4 focuses on additions and the resulting substitutions at carbon-carbon &pgr;-bonds. Part 1 includes processes generally considered as simple polar reactions, reactive electrophiles and nucleophiles adding to alkenes and alkynes. A major topic is Michael-type addition to electron deficient &pgr;-bonds, featured in the first six chapters. In part 2 are collected the four general processes leading to nucleophilic aromatic substitution, including radical chain processes and transition metal activation through to &pgr;-complexation. Metal-activated addition (generally by nucleophiles) to alkenes and polyenes is presented in part 3, including allylic alkylation catalyzed by palladium. The coverage of nonpolar additions in part 4 includes radical additions, organometal addition (Heck reaction), carbene addition, and 1,3-dipolar cycloadditions.