Download Free Rhodium And Iridium Phosphine Complexes Book in PDF and EPUB Free Download. You can read online Rhodium And Iridium Phosphine Complexes and write the review.

This book deals with polypyrazolylborates (scorpionates), a class of ligands known since 1966, but becoming rapidly popular with inorganic, organometallic and coordination chemists since 1986, because of their versatility and user-friendliness. They can be readily modified sterically and electronically through appropriate substitution on the pyrazole ring and on boron, and have led to a number of firsts in coordination chemistry (first stable CuCO complex, first monomeric MgR complex, and many other such firsts). Their denticity can range from two to four, their “Bite” can be adjusted, and additional coordinating sites can be added to the pyrazolyl rings. Over 170 different scorpionate ligands are known today, and some are published for the first time in this book.The author, Swiatoslaw Trofimenko, discovered and developed this ligand system and has written several reviews on the subject. The book is intended as a reference work, placing at the researcher's command practically all of the over 1500 references on the subject up, and into 1999, organized both according to the ligand type and according to the metal or metalloid being coordinated. It acquaints the reader with the special features of this ligand system and permits an assessment of what has been done in a given sub-area, and of which areas remain relatively unexplored. It presents procedures for ligand synthesis, and also covers their use in catalysis and in the modelling of biologically active substances.
Ranging from hydrogenation to hydroamination, cycloadditions and nanoparticles, this first handbook to comprehensively cover the topic of iridium in synthesis discusses the important advances in iridium-catalyzed reactions, namely the use of iridium complexes in enantioselective catalysis. A must for organic, complex and catalytic chemists, as well as those working with/on organometallics.
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
Organometallic Chemistry of Five-Membered Heterocycles explores the synthesis, coordination modes, reactivity of coordinated five-membered monoheterocycles, and organometallic complexes of their numerous derivatives, including chelating ligands, oligomers, and macrocycles. Beginning with the introduction of organometallic compounds, this book dives deep into the reactivity of coordinated five-membered monoheterocycles and the derivatives of fundamental ligands. This book is an ideal reference for researchers working in organometallic, heterocyclic, materials, or organic chemistry, and catalysis. The readers will gain a comprehensive understanding of modern synthetic methods, reactivity trends of heteroaromatic ligands, and the methods of modern materials construction.
This book describes the emergence and recent advances in the design and development of rhodium complexes as therapeutic agents. Different classes of anticancer rhodium complexes with particular emphasis on ligands containing nitrogen-oxygen donor atoms are presented. Anticancer rhodium complexes of N-heterocyclic carbenes are described, while half-sandwich, heterobimetallic, and multinuclear rhodium complexes are discussed. Therapeutic applications of rhodium complexes beyond cancer such as antibacterial agents or antiviral agents are also analyzed, among others. Their mechanism of action is overviewed in detail, and the authors thoroughly comment on the challenges and future outlooks of research in the development of rhodium metallodrugs. This title highlights the important research carried out in the development of therapeutic rhodium complexes and is of great interest to graduates and researchers working in the area of rhodium-based therapeutic drugs.
From reviews of the first English edition: 'The selection of material and the order of its presentation is first class ... Students and their instructors will find this book extraordinarily easy to use and extraordinarily useful.' Chemistry in Britain 'Elschenbroich and Salzer have written the textbook of choice for graduate or senior-level courses that place an equal emphasis on main group element and transition metal organometallic chemistry. ... this book can be unequivocally recommended to any teacher or student of organometallic chemistry.' Angewandte Chemie International Edition 'The breadth and depth of coverage are outstanding, and the excitement of synthetic organometallic chemistry comes across very strongly.' Journal of the American Chemical Society
Over the last 60 years the increasing knowledge of transition metal chemistry has resulted in an enormous advance of homogeneous catalysis as an essential tool in both academic and industrial fields. Remarkably, phosphorus(III) donor ligands have played an important role in several of the acknowledged catalytic reactions. The positive effects of phosphine ligands in transition metal homogeneous catalysis have contributed largely to the evolution of the field into an indispensable tool in organic synthesis and the industrial production of chemicals. This book aims to address the design and synthesis of a comprehensive compilation of P(III) ligands for homogeneous catalysis. It not only focuses on the well-known traditional ligands that have been explored by catalysis researchers, but also includes promising ligand types that have traditionally been ignored mainly because of their challenging synthesis. Topics covered include ligand effects in homogeneous catalysis and rational catalyst design, P-stereogenic ligands, calixarenes, supramolecular approaches, solid phase synthesis, biological approaches, and solubility and separation. Ligand families covered in this book include phosphine, diphosphine, phosphite, diphosphite, phosphoramidite, phosphonite, phosphinite, phosphole, phosphinine, phosphinidenene, phosphaalkenes, phosphaalkynes, P-chiral ligands, and cage ligands. Each ligand class is accompanied by detailed and reliable synthetic procedures. Often the rate limiting step in the application of ligands in catalysis is the synthesis of the ligands themselves, which can often be very challenging and time consuming. This book will provide helpful advice as to the accessibility of ligands as well as their synthesis, thereby allowing researchers to make a more informed choice. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis is an essential overview of this important class of catalysts for academic and industrial researchers working in catalyst development, organometallic and synthetic chemistry.
The first to combine both the bioinorganic and the organometallic view, this handbook provides all the necessary knowledge in one convenient volume. Alongside a look at CO2 and N2 reduction, the authors discuss O2, NO and N2O binding and reduction, activation of H2 and the oxidation catalysis of O2. Edited by the highly renowned William Tolman, who has won several awards for his research in the field.
The field of transition metal catalysis has experienced incredible growth during the past decade. The reasons for this are obvious when one considers the world's energy problems and the need for new and less energy demanding syntheses of important chemicals. Heterogeneous catalysis has played a major industrial role; however, such reactions are generally not selective and are exceedingly difficult to study. Homogeneous catalysis suffers from on-site engineering difficulties; however, such reactions usually provide the desired selectivity. For example, Monsanto's synthesis of optically-active amino acids employs a chiral homogeneous rhodium diphosphine catalyst. Industrial uses of homogeneous catalyst systems are increasing. It is not by accident that many homogeneous catalysts contain tertiary phosphine ligands. These ligands possess the correct steric and electronic properties that are necessary for catalytic reactivity and selectivity. This point will be emphasized throughout the book. Thus the stage is set for a comprehensive be treatment of the many ways in which phosphine catalyst systems can designed, synthesized, and studied.