Download Free Rheology And Polymer Processing Multiphase Systems Book in PDF and EPUB Free Download. You can read online Rheology And Polymer Processing Multiphase Systems and write the review.

Multiphase Flow in Polymer Processing focuses on dispersed and stratified multiphase flow in polymer processing. This book explores the rheological behavior of multiphase (or multicomponent) polymeric systems as they are involved in various fabrication operations. It also outlines the importance of the morphological states of multiphase polymeric systems to explain the systems, rheological behavior in the fluid state, and mechanical behavior in the solid state. This monograph consists of eight chapters divided into two parts. After discussing dispersed and stratified multiphase flow in polymer processing, it introduces the reader to the fundamentals of rheology. The following chapters focus on the rheological behavior of particulate-filled polymeric systems and heterogeneous polymeric systems; the phenomenon of droplet breakup in dispersed flow; and gas-charged polymeric systems. The role of the discrete phase (that is, solid particles, liquid droplets, gas bubbles) in determining the bulk rheological properties of the multiphase system is highlighted, along with some representative polymer processing operations (namely, fiber spinning and injection molding) of the multiphase (or multicomponent) polymeric systems. Coextrusion in cylindrical, rectangular, and annular dies is also considered. The final chapter is devoted to the phenomenon of interfacial instability in coextrusion. This text will be a useful resource for chemists, chemical engineers, and those in the polymer processing industry.
This book is designed to fulfill a dual role. On the one hand it provides a description of the rheological behavior of molten poly mers. On the other, it presents the role of rheology in melt processing operations. The account of rheology emphasises the underlying principles and presents results, but not detailed deriva tions of equations. The processing operations are described qualita tively, and wherever possible the role of rheology is discussed quantitatively. Little emphasis is given to non-rheological aspects of processes, for example, the design of machinery. The audience for which the book is intended is also dual in It includes scientists and engineers whose work in the nature. plastics industry requires some knowledge of aspects of rheology. Examples are the polymer synthetic chemist who is concerned with how a change in molecular weight will affect the melt viscosity and the extrusion engineer who needs to know the effects of a change in molecular weight distribution that might result from thermal degra dation. The audience also includes post-graduate students in polymer science and engineering who wish to acquire a more extensive background in rheology and perhaps become specialists in this area. Especially for the latter audience, references are given to more detailed accounts of specialized topics, such as constitutive relations and process simulations. Thus, the book could serve as a textbook for a graduate level course in polymer rheology, and it has been used for this purpose.
Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces focuses on the formation of phase morphology in polymer blends and copolymers and considers various types of blends including thermosets, thermoplastics, thermoplastic vulcanizates, and structured copolymers. The book carefully debates the processing
Experts in rheology and polymer processing present up-to-date, fundamental and applied information on the rheological properties of polymers, in particular those relevant to processing, contributing to the physical understanding and the mathematical modelling of polymer processing sequences. Basic concepts of non-Newtonian fluid mechanics, micro-rheological modelling and constitutive modelling are reviewed, and rheological measurements are described. Topics with practical relevance are debated, such as linear viscoelasticity, converging and diverging flows, and the rheology of multiphase systems. Approximation methods are discussed for the computer modelling of polymer melt flow. Subsequently, polymer processing technologies are studied from both simulation and engineering perspectives. Mixing, crystallization and reactive processing aspects are also included. Audience: An integrated and complete view of polymer processing and rheology, important to institutions and individuals engaged in the characterisation, testing, compounding, modification and processing of polymeric materials. Can also support academic polymer processing engineering programs.
Rheology is applied extensively in polymer, chemical, food processing, and related industries. This book combines the basic concepts and applications by presenting a balanced overview of the principles. With simplified analysis of complex problems, the textbook format provides easy understanding for both students and practicing professionals. There is no competing book with such a wide scope, including unique topics such as diffusion, flows about particles, and liquid mixing. This second edition is abundantly updated throughout. Highlights include elongational flow measurements, POM-POM modeling, diffusion and rheology of polymer nanocomposites, new results based on CFD simulations, and much more.
Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications focuses on rheology in polymer nanocomposites. It provides readers with a solid grounding in the fundamentals of rheology, with an emphasis on recent advancements. Chapters explore potential future applications for nanocomposites and polymer blends, giving readers a thorough understanding of the specific features derived from rheology as a tool for the study of polymer blends and nanocomposites. This book is ideal for industrial and academic researchers in the field of polymer blends and nanocomposites, but is also a great resource for anyone who wants to learn about the applications of rheology. - Sets out the principles of rheology as it is applied to polymer blends and nanocomposites - Demonstrates how rheological techniques are best applied to different classes of nanocomposites - Assesses the opportunities and major challenges of rheological approaches to polymer blends and nanocomposites
This book covers a wide range of topics in polymer rheology. These are: Basic Principles, parameters, systems and applied mathematical models used in the rheological studies Melt flow analysis of different non-Newtonian fluids in laminar flow, transition between laminar and turbulent flow and modified Reynolds number The effects of different physical and molecular parameters on purely viscous rheological response of polymer melts and solutions Principles of rheometery and different types of viscometers and on-line rheometers The static and dynamic viscoelastic response of the polymer melts and solutions, viscoelasticity, mechanical models and Boltzmann superposition principle Molecular structure – viscoelasticity relationship and linear and non-linear viscoelasticity Effects of different processes, materials parameters like temperature, fillers (micro and nano-fillers) and molecular parameters like MW, MWD The role of rheology in polymer processing in different equipment Modified power law constants and two range power law constants for a large number of polymers, rheology software program in Java, comparison of different polymer rheological models using the rheology software and answers to the problems The book will be very useful to both undergraduate and postgraduate students, as well as teachers and practicing rheologists.
Polymer science is fundamentally interdisciplinary, yet specialists in one aspect, such as chemistry or processing, frequently encounter difficulties in understanding the effects of other disciplines on their own. This book describes clearly how polymer chemistry and polymer processing interact to affect polymer properties. As such, specialists in both disciplines can gain a deeper understanding of how these subjects underpin each other. Coverage includes step-by-step introductions to polymer processing technologies; details of fluid flow and heat transfer behaviour; shaping methods and physical processes during cooking and curing, and analyses of moulding and extrusion processes.
The aim of the School on Rheology of Complex fluids is to bring together young researchers and teachers from educational and R&D institutions, and expose them to the basic concepts and research techniques used in the study of rheological behavior of complex fluids. The lectures will be delivered by well-recognized experts. The book contents will be based on the lecture notes of the school.