Download Free Revisiting Mathematics Education Book in PDF and EPUB Free Download. You can read online Revisiting Mathematics Education and write the review.

This book is a product of love and respect. If that sounds rather odd I initially apologise, but let me explain why I use those words. The original manuscript was of course Freudenthal’s, but his colleagues have carried the project through to its conclusion with love for the man, and his ideas, and with a respect developed over years of communal effort. Their invitation to me to write this Preface e- bles me to pay my respects to the great man, although I am probably incurring his wrath for writing a Preface for his book without his permission! I just hope he understands the feelings of all colleagues engaged in this particular project. Hans Freudenthal died on October 13th, 1990 when this book project was well in hand. In fact he wrote to me in April 1988, saying “I am thinking about a new book. I have got the sub-title (China Lectures) though I still lack a title”. I was astonished. He had retired in 1975, but of course he kept working. Then in 1985 we had been helping him celebrate his 80th birthday, and although I said in an Editorial Statement in Educational Studies in Mathematics (ESM) at the time “we look forward to him enjoying many more years of non-retirement” I did not expect to see another lengthy manuscript.
This ground-breaking book investigates how the learning and teaching of mathematics can be improved through integrating the history of mathematics into all aspects of mathematics education: lessons, homework, texts, lectures, projects, assessment, and curricula. It draws upon evidence from the experience of teachers as well as national curricula, textbooks, teacher education practices, and research perspectives across the world. It includes a 300-item annotated bibliography of recent work in the field in eight languages.
This open access book, inspired by the ICME 13 Thematic Afternoon on “European Didactic Traditions”, takes readers on a journey with mathematics education researchers, developers and educators in eighteen countries, who reflect on their experiences with Realistic Mathematics Education (RME), the domain-specific instruction theory for mathematics education developed in the Netherlands since the late 1960s. Authors from outside the Netherlands discuss what aspects of RME appeal to them, their criticisms of RME and their past and current RME-based projects. It is clear that a particular approach to mathematics education cannot simply be transplanted to another country. As such, in eighteen chapters the authors describe how they have adapted RME to their individual circumstances and view on mathematics education, and tell their personal stories about how RME has influenced their thinking on mathematics education.
This 10th-anniversary sequel to the authors’ best-selling book Professional Learning Communities at WorkTM: Best Practices for Enhancing Student Achievement merges research, practice, and passion. The most extensive, practical, and authoritative PLC resource to date, it goes further than ever before into best practices for deep implementation, explores the commitment/consensus issue, and celebrates successes of educators who are making the journey.
This engaging open access book discusses how a values and valuing perspective can facilitate a more effective mathematics pedagogical experience, and allows readers to explore multiple applications of the values perspective across different education systems. It also clearly shows that teaching mathematics involves not only reasoning and feelings, but also students’ interactions with their cultural setting and each other. The book brings together the work of world leaders and new thinkers in mathematics educational research to improve the learning and teaching of mathematics. Addressing themes such as discovering hidden cultural values, a multicultural society and methodological issues in the investigation of values in mathematics, it stimulates readers to consider these topics in cross-cultural ways, and offers suggestions for research and classroom practice. It is a valuable resource for scholars of mathematics education, from early childhood through to higher education and an inspiring read for all mathematics teachers.
Critical mathematics education brings together a series of concerns related to mathematics and its role in society, the practices of teaching and learning of mathematics in educational settings, and the practices of researching mathematics education. The work of Ole Skovsmose has provided a seminal contribution to the shaping of those concerns in the international community of mathematics educators and mathematics education researchers.
This book is about the role and potential of using digital technology in designing teaching and learning tasks in the mathematics classroom. Digital technology has opened up different new educational spaces for the mathematics classroom in the past few decades and, as technology is constantly evolving, novel ideas and approaches are brewing to enrich these spaces with diverse didactical flavors. A key issue is always how technology can, or cannot, play epistemic and pedagogic roles in the mathematics classroom. The main purpose of this book is to explore mathematics task design when digital technology is part of the teaching and learning environment. What features of the technology used can be capitalized upon to design tasks that transform learners’ experiential knowledge, gained from using the technology, into conceptual mathematical knowledge? When do digital environments actually bring an essential (educationally, speaking) new dimension to classroom activities? What are some pragmatic and semiotic values of the technology used? These are some of the concerns addressed in the book by expert scholars in this area of research in mathematics education. This volume is the first devoted entirely to issues on designing mathematical tasks in digital teaching and learning environments, outlining different current research scenarios.
This is the first comprehensive International Handbook on the History of Mathematics Education, covering a wide spectrum of epochs and civilizations, countries and cultures. Until now, much of the research into the rich and varied history of mathematics education has remained inaccessible to the vast majority of scholars, not least because it has been written in the language, and for readers, of an individual country. And yet a historical overview, however brief, has become an indispensable element of nearly every dissertation and scholarly article. This handbook provides, for the first time, a comprehensive and systematic aid for researchers around the world in finding the information they need about historical developments in mathematics education, not only in their own countries, but globally as well. Although written primarily for mathematics educators, this handbook will also be of interest to researchers of the history of education in general, as well as specialists in cultural and even social history.
No one disputes how important it is, in today's world, to prepare students to un derstand mathematics as well as to use and communicate mathematics in their future lives. That task is very difficult, however. Refocusing curricula on funda mental concepts, producing new teaching materials, and designing teaching units based on 'mathematicians' common sense' (or on logic) have not resulted in a better understanding of mathematics by more students. The failure of such efforts has raised questions suggesting that what was missing at the outset of these proposals, designs, and productions was a more profound knowledge of the phenomena of learning and teaching mathematics in socially established and culturally, politically, and economically justified institutions - namely, schools. Such knowledge cannot be built by mere juxtaposition of theories in disci plines such as psychology, sociology, and mathematics. Psychological theories focus on the individual learner. Theories of sociology of education look at the general laws of curriculum development, the specifics of pedagogic discourse as opposed to scientific discourse in general, the different possible pedagogic rela tions between the teacher and the taught, and other general problems in the inter face between education and society. Mathematics, aside from its theoretical contents, can be looked at from historical and epistemological points of view, clarifying the genetic development of its concepts, methods, and theories. This view can shed some light on the meaning of mathematical concepts and on the difficulties students have in teaching approaches that disregard the genetic development of these concepts.
Why is it that so many pupils are put off by maths, seeing it as uninspiring and irrelevant, and that so many choose to drop it as soon as they can? Why is it socially acceptable to be bad at maths? Does the maths curriculum really prepare pupils for life? This book presents some answers to these questions, helping teachers to think through their own attitudes to teaching and learning, and to work with pupils towards more effective and inspiring mathematical engagement. Part I of the book explores the nature of school mathematics - showing how the curriculum has been developed over the years, and how increasing effort has been devoted to improving the quality of mathematics teaching, with little apparent effect. Part II focuses on ways of thinking about classroom mathematics which take account of social, cultural, political and historical aspects. The chapters bring together a collection of activities, resources and discussion which will help teachers develop new ways of teaching and learning maths. This book will be essential reading for all maths teachers, including maths specialists on initial teacher training courses.