Download Free Reticulate Evolution And Humans Book in PDF and EPUB Free Download. You can read online Reticulate Evolution And Humans and write the review.

This book describes the important role that the transfer of genes between organisms has played during the origin and evolution of humans, and the evolution of organisms on which the human species depends for shelter, sustenance and companionship.
Written for non-experts, this volume introduces the mechanisms that underlie reticulate evolution. Chapters are either accompanied with glossaries that explain new terminology or timelines that position pioneering scholars and their major discoveries in their historical contexts. The contributing authors outline the history and original context of discovery of symbiosis, symbiogenesis, lateral gene transfer, hybridization or divergence with gene flow and infectious heredity. By applying key insights from the areas of molecular (phylo)genetics, microbiology, virology, ecology, systematics, immunology, epidemiology and computational science, they demonstrate how reticulate evolution impacts successful survival, fitness and speciation. Reticulate evolution brings forth a challenge to the standard Neo-Darwinian framework, which defines life as the outcome of bifurcation and ramification patterns brought forth by the vertical mechanism of natural selection. Reticulate evolution puts forward a pattern in the tree of life that is characterized by horizontal mergings and lineage crossings induced by symbiosis, symbiogenesis, lateral gene transfer, hybridization or divergence with gene flow and infective heredity, making the “tree of life” look more like a “web of life.” On an epistemological level, the various means by which hereditary material can be transferred horizontally challenges our classic notions of units and levels of evolution, fitness, modes of transmission, linearity, communities and biological individuality. The case studies presented examine topics including the origin of the eukaryotic cell and its organelles through symbiogenesis; the origin of algae through primary and secondary symbiosis and dinoflagellates through tertiary symbiosis; the superorganism and holobiont as units of evolution; how endosymbiosis induces speciation in multicellular life forms; transferrable and non-transferrable plasmids and how they symbiotically interact with their host; the means by which pro- and eukaryotic organisms transfer genes laterally (bacterial transformation, transduction and conjugation as well as transposons and other mobile genetic elements); hybridization and divergence with gene flow in sexually-reproducing individuals; current (human) microbiome and viriome studies that impact our knowledge concerning the evolution of organismal health and acquired immunity; and how symbiosis and symbiogenesis can be modelled in computational evolution.
This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye’s domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.
This book is an investigation into processes associated with evolutionary divergence and diversification, focussing on the role played by the exchange of genes between divergent lineages.
At a glance, most species seem adapted to the environment in which they live. Yet species relentlessly evolve, and populations within species evolve in different ways. Evolution, as it turns out, is much more dynamic than biologists realized just a few decades ago. In Relentless Evolution, John N. Thompson explores why adaptive evolution never ceases and why natural selection acts on species in so many different ways. Thompson presents a view of life in which ongoing evolution is essential and inevitable. Each chapter focuses on one of the major problems in adaptive evolution: How fast is evolution? How strong is natural selection? How do species co-opt the genomes of other species as they adapt? Why does adaptive evolution sometimes lead to more, rather than less, genetic variation within populations? How does the process of adaptation drive the evolution of new species? How does coevolution among species continually reshape the web of life? And, more generally, how are our views of adaptive evolution changing? Relentless Evolution draws on studies of all the major forms of life—from microbes that evolve in microcosms within a few weeks to plants and animals that sometimes evolve in detectable ways within a few decades. It shows evolution not as a slow and stately process, but rather as a continual and sometimes frenetic process that favors yet more evolutionary change.
The nature of populations, races, subspecies, and species. Genetic basis of isolation. Origin of isolation - theoretical. Origin of isolation - experimental. The nature of the speciation process.
'Phylogenetics' is the reconstruction and analysis of phylogenetic (evolutionary) trees and networks based on inherited characteristics. It is a flourishing area of intereaction between mathematics, statistics, computer science and biology.The main role of phylogenetic techniques lies in evolutionary biology, where it is used to infer historical relationships between species. However, the methods are also relevant to a diverse range of fields including epidemiology, ecology, medicine, as well as linguistics and cognitive psychologyThis graduate-level book, based on the authors lectures at The University of Canterbury, New Zealand, focuses on the mathematical aspects of phylogenetics. It brings together the central results of the field (providing proofs of the main theorem), outlines their biological significance,and indicateshow algorithms may be derived. The presentation is self-contained and relies on discrete mathematics with some probability theory. A set of exercises and at least one specialist topic ends each chapter.This book is intended for biologists interested in the mathematical theory behind phylogenetic methods, and for mathematicians, statisticians, and computer scientists eager to learn about this emerging area of discrete mathematics.'Phylogenetics' in the 24th volume in the Oxford Lecture Series in Mathematics and its Applications. This series contains short books suitable for graduate students and researchers who want a well-written account of mathematics that is fundamental to current to research. The series emphasises futuredirections of research and focuses on genuine applications of mathematics to finance, engineering and the physical and biological sciences.
If Darwin were to examine the evidence today using modern science, would his conclusions be the same? Charles Darwin’s On the Origin of Species, published over 150 years ago, is considered one of history’s most influential books and continues to serve as the foundation of thought for evolutionary biology. Since Darwin’s time, however, new fields of science have immerged that simply give us better answers to the question of origins. With a Ph.D. in cell and developmental biology from Harvard University, Dr. Nathaniel Jeanson is uniquely qualified to investigate what genetics reveal about origins. The Origins Puzzle Comes Together If the science surrounding origins were a puzzle, Darwin would have had fewer than 15% of the pieces to work with when he developed his theory of evolution. We now have a much greater percentage of the pieces because of modern scientific research. As Dr. Jeanson puts the new pieces together, a whole new picture emerges, giving us a testable, predictive model to explain the origin of species. A New Scientific Revolution Begins Darwin’s theory of evolution may be one of science’s “sacred cows,” but genetics research is proving it wrong. Changing an entrenched narrative, even if it’s wrong, is no easy task. Replacing Darwin asks you to consider the possibility that, based on genetics research, our origins are more easily understood in the context of . . . In the beginning . . . God, with the timeline found in the biblical narrative of Genesis. There is a better answer to the origins debate than what we have been led to believe. Let the revolution begin! About the Author Dr. Nathaniel Jeanson is a scientist and a scholar, trained in one of the most prestigious universities in the world. He earned his B.S. in Molecular Biology and Bioinformatics from the University of Wisconsin-Parkside and his PhD in Cell and Developmental Biology from Harvard University. As an undergraduate, he researched the molecular control of photosynthesis, and his graduate work involved investigating the molecular and physiological control of adult blood stem cells. His findings have been presented at regional and national conferences and have been published in peer-reviewed journals, such as Blood, Nature, and Cell. Since 2009, he has been actively researching the origin of species, both at the Institute for Creation Research and at Answers in Genesis.