Download Free Restructured Electric Power Systems Book in PDF and EPUB Free Download. You can read online Restructured Electric Power Systems and write the review.

The latest practical applications of electricity market equilibrium models in analyzing electricity markets Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets. Drawing upon the extensive involvement in the research and industrial development of the leading experts in the subject area, the book starts by explaining the current developments of electrical power systems towards smart grids and then relates the operation and control technologies to the aspects in electricity markets. It explores: The problems of electricity market behavior and market power Mathematical programs with equilibrium constraints (MPEC) and equilibrium problems with equilibrium constraints (EPEC) Tools and techniques for solving the electricity market equilibrium problems Various electricity market equilibrium models State-of-the-art techniques for computing the electricity market equilibrium problems The application of electricity market equilibrium models in assessing the economic benefits of transmission expansions for market environments, forward and spot markets, short-term power system security, and analysis of reactive power impact Also featured are computational resources to allow readers to develop algorithms on their own, as well as future research directions in modeling and computational techniques in electricity market analysis. Restructured Electric Power Systems is an invaluable reference for electrical engineers and power system economists from power utilities and for professors, postgraduate students, and undergraduate students in electrical power engineering, as well as those responsible for the design, engineering, research, and development of competitive electricity markets and electricity market policy.
An examination of key issues in electric utilities restructuring. It covers: electric utility markets in and out of the USA; the Open Access Same-time Information System; tagging transactions; trading energy; hedging tools for managing risks in various markets; pricing volatility, risk and forecasting; regional transmission organization; and more. The text contains acronyms, a contract specifications sample, examples, and nearly 500 bibliographic citations, tables, and drawings.
Deregulation is a fairly new paradigm in the electric power industry. And just as in the case of other industries where it has been introduced, the goal of deregulation is to enhance competition and bring consumers new choices and economic benefits. The process has, obviously, necessitated reformulation of established models of power system operation and control activities. Similarly, issues such as system reliability, control, security and power quality in this new environment have come in for scrutiny and debate. In this book, we attempt to present a comprehensive overview of the deregulation process that has developed till now, focussing on the operation aspects. As of now, restructured electricity markets have been established in various degrees and forms in many countries. This book comes at a time when the deregulation process is poised to undergo further rapid advancements. It is envisaged that the reader will benefit by way of an enhanced understanding of power system operations in the conventional vertically integrated environment vis-a-vis the deregulated environment. The book is aimed at a wide range of audience- electric utility personnel involved in scheduling, dispatch, grid operations and related activities, personnel involved in energy trading businesses and electricity markets, institutions involved in energy sector financing. Power engineers, energy economists, researchers in utilities and universities should find the treatment of mathematical models as well as emphasis on recent research work helpful.
An examination of key issues in electric utilities restructuring. It covers: electric utility markets in and out of the USA; the Open Access Same-time Information System; tagging transactions; trading energy; hedging tools for managing risks in various markets; pricing volatility, risk and forecasting; regional transmission organization; and more. The text contains acronyms, a contract specifications sample, examples, and nearly 500 bibliographic citations, tables, and drawings.
The writing of this book was largely motivated by the ongoing unprecedented world-wide restructuring of the power industry. This move away from the traditional monopolies and toward greater competition, in the form of increased numbers of independent power producers and an unbundling of the main services that were until now provided by the utilities, has been building up for over a decade. This change was driven by the large disparities in electricity tariffs across regions, by technological developments that make it possible for small producers to compete with large ones, and by a widely held belief that competition will be beneficial in a broad sense. All of this together with the political will to push through the necessary legislative reforms has created a climate conducive to restructuring in the electric power industry. Consequently, since the beginning of this decade dramatic changes have taken place in an ever-increasing list of nations, from the pioneering moves in the United Kingdom, Chile and Scandinavia, to today's highly fluid power industry throughout North and South America, as well as in the European Community. The drive to restructure and take advantage of the potential economic benefits has, in our view, forced the industry to take actions and make choices at a hurried pace, without the usual deliberation and thorough analysis of possible implications. We must admit that to speak of "the industry" at this juncture is perhaps disingenuous, even misleading.
Applied Mathematics for Restructured Electric Power Systems: Optimization, Control, and Computational Intelligence consists of chapters based on work presented at a National Science Foundation workshop organized in November 2003. The theme of the workshop was the use of applied mathematics to solve challenging power system problems. The areas included control, optimization, and computational intelligence. In addition to the introductory chapter, this book includes 12 chapters written by renowned experts in their respected fields. Each chapter follows a three-part format: (1) a description of an important power system problem or problems, (2) the current practice and/or particular research approaches, and (3) future research directions. Collectively, the technical areas discussed are voltage and oscillatory stability, power system security margins, hierarchical and decentralized control, stability monitoring, embedded optimization, neural network control with adaptive critic architecture, control tuning using genetic algorithms, and load forecasting and component prediction. This volume is intended for power systems researchers and professionals charged with solving electric and power system problems.
Die Umstrukturierung und Liberalisierung der Stromerzeugung brachte tiefgreifende Veränderungen des Marktes, des Wettbewerbs, der Technologien und nicht zuletzt der gesetzlichen Vorschriften mit sich. Dieser Band konzentriert sich auf die technischen Fortschritte und bespricht derzeit aktuelle Probleme anhand anschaulicher Fallstudien. So werden zum Beispiel neue Verfahren zur Vorhersage der Netzlast erläutert. Von international renommierten Experten geschrieben! (07/00)
An essential overview of post-deregulation market operations inelectrical power systems Until recently the U.S. electricity industry was dominated byvertically integrated utilities. It is now evolving into adistributive and competitive market driven by market forces andincreased competition. With electricity amounting to a $200 billionper year market in the United States, the implications of thisrestructuring will naturally affect the rest of the world. Why is restructuring necessary? What are the components ofrestructuring? How is the new structure different from the oldmonopoly? How are the participants strategizing their options tomaximize their revenues? What are the market risks and how are theyevaluated? How are interchange transactions analyzed and approved?Starting with a background sketch of the industry, this hands-onreference provides insights into the new trends in power systemsoperation and control, and highlights advanced issues in thefield. Written for both technical and nontechnical professionals involvedin power engineering, finance, and marketing, this must-haveresource discusses: * Market structure and operation of electric power systems * Load and price forecasting and arbitrage * Price-based unit commitment and security constrained unitcommitment * Market power analysis and game theory applications * Ancillary services auction market design * Transmission pricing and congestion Using real-world case studies, this timely survey offers engineers,consultants, researchers, financial managers, university professorsand students, and other professionals in the industry acomprehensive review of electricity restructuring and how itsradical effects will shape the market.
The electric power industry in the U.S. has undergone dramatic changes in recent years. Tight regulations enacted in the 1970's and then de-regulation in the 90's have transformed it from a technology-driven industry into one driven by public policy requirements and the open-access market. Now, just as the utility companies must change to ensure their survival, engineers and other professionals in the industry must acquire new skills, adopt new attitudes, and accommodate other disciplines. Power System Operations and Electricity Markets provides the information engineers need to understand and meet the challenges of the new competitive environment. Integrating the business and technical aspects of the restructured power industry, it explains, clearly and succinctly, how new methods for power systems operations and energy marketing relate to public policy, regulation, economics, and engineering science. The authors examine the technologies and techniques currently in use and lay the groundwork for the coming era of unbundling, open access, power marketing, self-generation, and regional transmission operations. The rapid, massive changes in the electric power industry and in the economy have rendered most books on the subject obsolete. Based on the authors' years of front-line experience in the industry and in regulatory organizations, Power System Operations and Electricity Markets is current, insightful, and complete with Web links that will help readers stay up to date.
The first extensive reference on these important techniques The restructuring of the electric utility industry has created the need for a mechanism that can effectively coordinate the various entities in a power market, enabling them to communicate efficiently and perform at an optimal level. Communication and Control in Electric Power Systems, the first resource to address its subject in an extended format, introduces parallel and distributed processing techniques as a compelling solution to this critical problem. Drawing on their years of experience in the industry, Mohammad Shahidehpour and Yaoyu Wang deliver comprehensive coverage of parallel and distributed processing techniques with a focus on power system optimization, control, and communication. The authors begin with theoretical background and an overview of the increasingly deregulated power market, then move quickly into the practical applications and implementations of these pivotal techniques. Chapters include: Integrated Control Center Information Parallel and Distributed Computation of Power Systems Common Information Model and Middleware for Integration Online Distributed Security Assessment and Control Integration, Control, and Operation of Distributed Generation Agent Theory and Power Systems Management e-Commerce of Electricity A ready resource for both students and practitioners, Communication and Control in Electric Power Systems proves an ideal textbook for first-year graduate students in power engineering with an interest in computer communication systems and control center design. Designers, operators, planners, and researchers will likewise appreciate its unique contribution to the professional literature.