Download Free Restricted Lie Superalgebras And Their Universal Enveloping Algebras Book in PDF and EPUB Free Download. You can read online Restricted Lie Superalgebras And Their Universal Enveloping Algebras and write the review.

Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. This book develops the theory of Lie superalgebras, their enveloping algebras, and their representations. The book begins with five chapters on the basic properties of Lie superalgebras, including explicit constructions for all the classical simple Lie superalgebras. Borel subalgebras, which are more subtle in this setting, are studied and described. Contragredient Lie superalgebras are introduced, allowing a unified approach to several results, in particular to the existence of an invariant bilinear form on $\mathfrak{g}$. The enveloping algebra of a finite dimensional Lie superalgebra is studied as an extension of the enveloping algebra of the even part of the superalgebra. By developing general methods for studying such extensions, important information on the algebraic structure is obtained, particularly with regard to primitive ideals. Fundamental results, such as the Poincare-Birkhoff-Witt Theorem, are established. Representations of Lie superalgebras provide valuable tools for understanding the algebras themselves, as well as being of primary interest in applications to other fields. Two important classes of representations are the Verma modules and the finite dimensional representations. The fundamental results here include the Jantzen filtration, the Harish-Chandra homomorphism, the Sapovalov determinant, supersymmetric polynomials, and Schur-Weyl duality. Using these tools, the center can be explicitly described in the general linear and orthosymplectic cases. In an effort to make the presentation as self-contained as possible, some background material is included on Lie theory, ring theory, Hopf algebras, and combinatorics.
For the graduate student, this is a masterpiece of pedagogical writing, being succinct, wonderfully self-contained and of exceptional precision. --Mathematical Reviews This book, which is the first systematic exposition of the algebraic approach to representations of Lie groups via representations of (or modules over) the corresponding universal enveloping algebras, turned out to be so well written that even today it remains one of the main textbooks and reference books on the subject. In 1992, Jacques Dixmier was awarded the Leroy P. Steele Prize for expository writing in mathematics. The Committee's citation mentioned Enveloping Algebras as one of Dixmier's ``extraordinary books''. Written with unique precision and elegance, the book provides the reader with insight and understanding of this very important subject. For the 1996 printing, Dixmier updated the status of open problems and added some relevant references. The book is suitable as a textbook for a graduate course on enveloping algebras. It is also a valuable reference for graduate students and research mathematicians interested in Lie algebras.
This book presents an introduction to the structure and representation theory of modular Lie algebras over fields of positive characteristic. It introduces the beginner to the theory of modular Lie algebras and is meant to be a reference text for researchers.
Over the past 30 years, exciting developments in diverse areas of the theory of Lie algebras and their representations have been observed. The symposium covered topics such as Lie algebras and combinatorics, crystal bases for quantum groups, quantum groups and solvable lattice models, and modular and infinite-dimensional Lie algebras. In this volume, readers will find several excellent expository articles and research papers containing many significant new results in this area.
This updated edition of a classic title studies identical relations in Lie algebras and also in other classes of algebras, a theory with over 40 years of development in which new methods and connections with other areas of mathematics have arisen. New topics covered include graded identities, identities of algebras with actions and coactions of various Hopf algebras, and the representation theory of the symmetric and general linear group.
A revised version of the author's PhD thesis written under the supervision of J Lepowsky at Rutgers University in 1983.
As the Proceedings of the 1984 Canadian Mathematical Society's Summer Seminar, this book focuses on some advances in the theory of semisimple Lie algebras and some direct outgrowths of that theory. The following papers are of particular interest: an important survey article by R. Block and R. Wilson on restricted simple Lie algebras, a survey of universal enveloping algebras of semisimple Lie algebras by W. Borho, a course on Kac-Moody Lie algebras by I. G. Macdonald with an extensive bibliography of this field by Georgia Benkart, and a course on formal groups by M. Hazewinkel. Because of the expository surveys and courses, the book will be especially useful to graduate students in Lie theory, as well as to researchers in the field.
The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gℓ∞ of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These Lie algebras appear in the lectures in connection to the Sugawara construction, which is the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra. In particular, the book provides a complete proof of the Kac determinant formula, the key result in representation theory of the Virasoro algebra.The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras — such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations — simplify and clarify the constructions of the first edition of the book.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite dimensional Lie algebras and of the theory of vertex algebras; and to physicists, these theories are turning into an important component of such domains of theoretical physics as soliton theory, conformal field theory, the theory of two-dimensional statistical models, and string theory.
DIVDefinitive treatment of important subject in modern mathematics. Covers split semi-simple Lie algebras, universal enveloping algebras, classification of irreducible modules, automorphisms, simple Lie algebras over an arbitrary field, etc. Index. /div