Download Free Resource Recovery Confinement And Remediation Of Environmental Hazards Book in PDF and EPUB Free Download. You can read online Resource Recovery Confinement And Remediation Of Environmental Hazards and write the review.

The papers in this volume arose out of two workshops entitled 'Confinement and Remediation of Environmental Hazards,' and 'Resource Recovery,' as part of the IMA 1999-2000 program year. These workshops brought together mathematicians, engineers and scientists to summarize recent theoretical, computational, and experimental advances in the theory of phenomena in porous media. The first workshop focused on the mathematical problems which arise in groundwater transport of contamination, and the spreading, confinement and remediation of biological, chemical and radioactive waste. In the second conference, the processes underlying petroleum recovery and the geological time scale of deformation, flow and reaction in porous media were discussed. Simulation techniques were used to simulate complex domains with widely-ranging spatial resolution and types of physics. Probability funcional methods for determining the most probable state of the subsurface and related uncertainty were discussed. Practical examples included breakout from chemical and radioactive waste repositories, confinement by injection of pore plugging material and bioremediation of petroleum and other wastes. This volume will be of interest to subsurface science practitioners who would like a view of recent mathematical and experimental efforts to examine subsurface science phenomena related to resource recovery and remediation issues.
At hundreds of thousands of commercial, industrial, and military sites across the country, subsurface materials including groundwater are contaminated with chemical waste. The last decade has seen growing interest in using aggressive source remediation technologies to remove contaminants from the subsurface, but there is limited understanding of (1) the effectiveness of these technologies and (2) the overall effect of mass removal on groundwater quality. This report reviews the suite of technologies available for source remediation and their ability to reach a variety of cleanup goals, from meeting regulatory standards for groundwater to reducing costs. The report proposes elements of a protocol for accomplishing source remediation that should enable project managers to decide whether and how to pursue source remediation at their sites.
Hazardous waste in the environment is one of the most difficult challenges facing our society. The purpose of this book is to provide a background of the many aspects of hazardous waste, from its sources to its consequences, focusing on the risks posed to human health and the environment. It explains the legislation and regulations surrounding hazardous waste; however, the scope of the book is much broader, discussing agents that are released into the environment that might not be classified as hazardous waste under the regulatory system, but nonetheless pose substantial hazards to human health and the environment. It provides a background of some of the major generators of hazardous wastes, explains the pathways by which humans and wildlife are exposed, and includes discussion of the adverse health effects linked to these pollutants. It provides numerous case studies of hazardous waste mismanagement that have led to disastrous consequences, and highlights the deficiencies in science and regulation that have allowed the public to be subjected to myriad potentially hazardous agents. Finally, it provides a discussion of measures that will need to be taken to control society's hazardous waste problem. This book was designed to appeal to a wide range of audiences, including students, professionals, and general readers interested in the topic. - Provides information about sources of and health risks posed by hazardous waste - Explains the legislation and regulations surrounding hazardous waste - Includes numerous case studies of mismanagement, highlights deficiencies in science and regulation and discusses measures to tackle society's hazardous waste problems
This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: MODELS, AND THEORY METHODS is based on the proceedings of a successful one week workshop. The pro ceedings of the two-day tutorial which preceded the workshop "Introduction to Epidemiology and Immunology" appears as IMA Volume 125: Math ematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. The tutorial and the workshop are integral parts of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BI OLOGY. " I would like to thank Carlos Castillo-Chavez (Director of the Math ematical and Theoretical Biology Institute and a member of the Depart ments of Biometrics, Statistics and Theoretical and Applied Mechanics, Cornell University), Sally M. Blower (Biomathematics, UCLA School of Medicine), Pauline van den Driessche (Mathematics and Statistics, Uni versity of Victoria), and Denise Kirschner (Microbiology and Immunology, University of Michigan Medical School) for their superb roles as organizers of the meetings and editors of the proceedings. Carlos Castillo-Chavez, es pecially, made a major contribution by spearheading the editing process. I am also grateful to Kenneth L. Cooke (Mathematics, Pomona College), for being one of the workshop organizers and to Abdul-Aziz Yakubu (Mathe matics, Howard University) for serving as co-editor of the proceedings. I thank Simon A. Levin (Ecology and Evolutionary Biology, Princeton Uni versity) for providing an introduction.
This book grew out of the discussions and presentations that began during the Workshop on Emerging and Reemerging Diseases (May 17-21, 1999) sponsored by the Institute for Mathematics and its Application (IMA) at the University of Minnesota with the support of NIH and NSF. The workshop started with a two-day tutorial session directed at ecologists, epidemiologists, immunologists, mathematicians, and scientists interested in the study of disease dynamics. The core of this first volume, Volume 125, covers tutorial and research contributions on the use of dynamical systems (deterministic discrete, delay, PDEs, and ODEs models) and stochastic models in disease dynamics. The volume includes the study of cancer, HIV, pertussis, and tuberculosis. Beginning graduate students in applied mathematics, scientists in the natural, social, or health sciences or mathematicians who want to enter the fields of mathematical and theoretical epidemiology will find this book useful.
The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.
The use of the internet for commerce has spawned a variety of auctions, marketplaces, and exchanges for trading everything from bandwidth to books. Mechanisms for bidding agents, dynamic pricing, and combinatorial bids are being implemented in support of internet-based auctions, giving rise to new versions of optimization and resource allocation models. This volume, a collection of papers from an IMA "Hot Topics" workshop in internet auctions, includes descriptions of real and proposed auctions, complete with mathematical model formulations, theoretical results, solution approaches, and computational studies. This volume also provides a mathematical programming perspective on open questions in auction theory, and provides a glimpse of the growing area of dynamic pricing.
In the ideal world, major decisions would be made based on complete and reliable information available to the decision maker. We live in a world of uncertainties, and decisions must be made from information which may be incomplete and may contain uncertainty. The key mathematical question addressed in this volume is "how to make decision in the presence of quantifiable uncertainty." The volume contains articles on model problems of decision making process in the energy and power industry when the available information is noisy and/or incomplete. The major tools used in studying these problems are mathematical modeling and optimization techniques; especially stochastic optimization. These articles are meant to provide an insight into this rapidly developing field, which lies in the intersection of applied statistics, probability, operations research, and economic theory. It is hoped that the present volume will provide entry to newcomers into the field, and stimulation for further research.
During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important. The ‘Handbook Geomathematics’ as a central reference work in this area comprises the following scientific fields: (I) observational and measurement key technologies (II) modelling of the system Earth (geosphere, cryosphere, hydrosphere, atmosphere, biosphere) (III) analytic, algebraic, and operator-theoretic methods (IV) statistical and stochastic methods (V) computational and numerical analysis methods (VI) historical background and future perspectives.