Download Free Resource Management In Federated Computing Environments Book in PDF and EPUB Free Download. You can read online Resource Management In Federated Computing Environments and write the review.

Today’s advancements in technology have brought about a new era of speed and simplicity for consumers and businesses. Due to these new benefits, the possibilities of universal connectivity, storage and computation are made tangible, thus leading the way to new Internet-of Things solutions. Resource Management and Efficiency in Cloud Computing Environments is an authoritative reference source for the latest scholarly research on the emerging trends of cloud computing and reveals the benefits cloud paths provide to consumers. Featuring coverage across a range of relevant perspectives and topics, such as big data, cloud security, and utility computing, this publication is an essential source for researchers, students and professionals seeking current research on the organization and productivity of cloud computing environments.
As more and more of our data is stored remotely, accessing that data wherever and whenever it is needed is a critical concern. More concerning is managing the databanks and storage space necessary to enable cloud systems. Resource Management of Mobile Cloud Computing Networks and Environments reports on the latest advances in the development of computationally intensive and cloud-based applications. Covering a wide range of problems, solutions, and perspectives, this book is a scholarly resource for specialists and end-users alike making use of the latest cloud technologies.
"This book presents an overview of current developments in cloud computing concepts, architectures, infrastructures and methods, focusing on the needs of small to medium enterprises"--Provided by publisher.
"This book presents, discusses, shares ideas, results and experiences on the recent important advances and future challenges on enabling technologies for achieving higher performance"--Provided by publisher.
This book constitutes the thoroughly refereed post-conference proceedings of the First International Workshop on Adaptive Resource Management and Scheduling for Cloud Computing, ARMS-CC 2014, held in Conjunction with ACM Symposium on Principles of Distributed Computing, PODC 2014, in Paris, France, in July 2014. The 14 revised full papers (including 2 invited talks) were carefully reviewed and selected from 29 submissions and cover topics such as scheduling methods and algorithms, services and applications, fundamental models for resource management in the cloud.
This book gathers the proceedings of the 12th International Conference on Frontier Computing, held in Tokyo, Japan, on July 12–15, 2022, and provides comprehensive coverage of the latest advances and trends in information technology, science, and engineering. It addresses a number of broad themes, including communication networks, business intelligence and knowledge management, Web intelligence, and related fields that inspire the development of information technology. The respective contributions cover a wide range of topics: database and data mining, networking and communications, Web and Internet of things, embedded systems, soft computing, social network analysis, security and privacy, optical communication, and ubiquitous/pervasive computing. Many of the papers outline promising future research directions, and the book benefits students, researchers, and professionals alike. Further, it offers a useful reference guide for newcomers to the field.
Cloud computing presents a promising approach for implementing scalable information and communications technology systems for private and public, individual, community, and business use. Achieving Federated and Self-Manageable Cloud Infrastructures: Theory and Practice overviews current developments in cloud computing concepts, architectures, infrastructures and methods, focusing on the needs of small to medium enterprises. The topic of cloud computing is addressed on two levels: the fundamentals of cloud computing and its impact on the IT world; and an analysis of the main issues regarding the cloud federation, autonomic resource management, and efficient market mechanisms, while supplying an overview of the existing solutions able to solve them. This publication is aimed at both enterprise business managers and research and academic audiences alike.
This book describes the next generation of industry—Industry 4.0—and how it holds the promise of increased flexibility in manufacturing, along with automation, better quality, and improved productivity. The authors discuss how it thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. The authors posit that intelligent cloud services and resource sharing play an important role in Industry 4.0 anticipated Fourth Industrial Revolution. This book serves the different issues and challenges in cloud resource management CRM techniques with proper propped solution for IT organizations. The book features chapters based on the characteristics of autonomic computing with its applicability in CRM. Each chapter features the techniques and analysis of each mechanism to make better resource management in cloud.
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”