Download Free Resource Management And Performance Analysis Of Wireless Communication Networks Book in PDF and EPUB Free Download. You can read online Resource Management And Performance Analysis Of Wireless Communication Networks and write the review.

With the diversification of Internet services and the increase in mobile users, efficient management of network resources has become an extremely important issue in the field of wireless communication networks (WCNs). Adaptive resource management is an effective tool for improving the economic efficiency of WCN systems as well as network design and construction, especially in view of the surge in mobile device demands. This book presents modelling methods based on queueing theory and Markov processes for a wide variety of WCN systems, as well as precise and approximate analytical solution methods for the numerical evaluation of the system performance. This is the first book to provide an overview of the numerical analyses that can be gleaned by applying queueing theory, traffic theory and other analytical methods to various WCN systems. It also discusses the recent advances in the resource management of WCNs, such as broadband wireless access networks, cognitive radio networks, and green cloud computing. It assumes a basic understanding of computer networks and queueing theory, and familiarity with stochastic processes is also recommended. The analysis methods presented in this book are useful for first-year-graduate or senior computer science and communication engineering students. Providing information on network design and management, performance evaluation, queueing theory, game theory, intelligent optimization, and operations research for researchers and engineers, the book is also a valuable reference resource for students, analysts, managers and anyone in the industry interested in WCN system modelling, performance analysis and numerical evaluation.
This book provides an analysis of transmission power and network performance in different wireless communication networks. It presents the latest research and techniques for power and interference control and performance modeling in wireless communication networks with different network topologies, air interfaces, and transmission techniques. While studying the power distributions and resource management, the reader will also learn basic methodology and skills for problem formulations, can ascertain the complexity for designing radio resource management strategies in modern wireless communication networks, thus keeping pace with state-of-the-art research progress in radio transmission technologies.
Following the pattern of the Internet growth in popularity, started in the early 1990s, the current unprecedented expansion of wireless technology promises to have an even greater effect on how people communicate and interact, with considerable socio-economic impact all over the world. The driving force behind this growth is the remarkable progress in component miniaturization, integration, and also devel- ments in waveforms, coding, and communication protocols. Besides established infrastructurebased wireless networks (cellular, WLAN, sat- lite) ad-hoc wireless networks emerge as a new platform for distributed applications and for personal communication in scenarios where deploying infrastructure is not feasible. In ad-hoc wireless networks, each node is capable of forwarding packets on behalf of other nodes, so that multi-hop paths provide end-to-end connectivity. The increased flexibility and mobility of ad-hoc wireless networks are favored for appli- tions in law enforcement, homeland defense and military. In a world where wireless networks become increasingly interoperable with each other and with the high-speed wired Internet, personal communication systems will transform into universal terminals with instant access to variate content and able of handle demanding tasks, such as multimedia and real-time video. With users roaming between networks, and with wide variation in wireless link quality even in a single domain, the communications terminal must continue to provide a level of Quality of Service that is acceptable to the user and conforms to a contracted Service Level Agreement.
Do you need to design efficient wireless communications systems? This unique text provides detailed coverage of radio resource allocation problems in wireless networks and the techniques that can be used to solve them. Covering basic principles and mathematical algorithms, and with a particular focus on power control and channel allocation, you will learn how to model, analyze, and optimize the allocation of resources in both physical and data link layers, and for a range of different network types. Both established and emerging networks are considered, including CDMA and OFDMA wireless networks, relay-based wireless networks, and cognitive radio networks. Numerous exercises help you put knowledge into practice, and provide the tools needed to address some of the current research problems in the field. This is an essential reference whether you are a graduate student, researcher or industry professional working in the field of wireless communication networks.
Summary: A compilation of articles that reviews the current design methodology and analytical models of wireless networks.
This book attempts to present exact and approximate analytical solution methods and techniques using queueing theory in the complex multimedia traffic systems with procedures of random multiple access schemes. In particular, this book presents how to approximate the system performance of discrete-time multimedia networks, the probability distribution of the interarrival time of internetwork packets at the adjacent network and the higher moments of the transmission departure distribution and delay in wireless multimedia communication environment. In general the modeling of discrete-time multimedia communication systems are more complex than that of continuous-time systems because multiple state changes can occur from one time-unit to the next. This complicates the analysis of the model. This book also discusses numerical results that illustrate the applications of the theory and various properties.
Radio Resource Management in Cellular Systems is the first book to address the critical issue of radio resource management in emerging (i.e., third generation and beyond) wireless systems. This book presents novel approaches for the design of high performance handoff algorithms that exploit attractive features of several existing algorithms, provide adaptation to dynamic cellular environment, and allow systematic tradeoffs among different system characteristics. Efficient handoff algorithms cost-effectively enhance the capacity and quality of service (QoS) of cellular systems. A comprehensive foundation of handoff and related issues of cellular communications is given. Tutorial-type material on the general features of 3G and 3.5G wireless systems (including CDMA2000, UMTS, and 1xEV-DO) is provided. Key elements for the development of simulators to study handoff and overall RF performance of the integrated voice and data cellular systems (including those based on CDMA) are also described. Finally, the powerful design tools of neural networks and fuzzy logic are applied to wireless communications, so that the generic algorithm approaches proposed in the book can be applied to many other design and development areas. The simulation models described in the book represent a single source that provides information for the performance evaluation of systems from handoff and resource management perspectives. Radio Resource Management in Cellular Systems will prove a valuable resource for system designers and practicing engineers working on design and development of third generation (and beyond) wireless systems. It may also be used as a text for advanced-level courses in wireless communications and neural networks.
This brief offers a valuable resource on principles of quality-of-service (QoS) provisioning and the related link-layer resource management techniques for high data-rate wireless networks. The primary emphasis is on protocol modeling and analysis. It introduces media access control (MAC) protocols, standards of wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless body area networks (WBANs), discussing their key technologies, applications, and deployment scenarios. The main analytical approaches and models for performance analysis of the fundamental resource scheduling mechanisms, including the contention-based, reservation-based, and hybrid MAC, are presented. To help readers understand and evaluate system performance, the brief contains a range of simulation results. In addition, a thorough bibliography provides an additional tool. This brief is an essential resource for engineers, researchers, students, and users of wireless networks.
Over recent years, wireless communication systems have been experiencing a dramatic and continuous growth in the number of subscribers, thus placing extra demands on system capacity. At the same time, keeping Quality of Service (QoS) at an acceptable level is a critical concern and a challenge to the wireless network designer. In this sense, performance analysis must be the first step in designing or improving a network. A good modelling and analysis of the wireless cellular networks will lead to a high level of QoS. In this book, different analytical models of various handoff schemes and resource re-allocation in homogeneous and heterogeneous wireless cellular networks are developed and investigated. The sustained increase in users and the request for advanced services are some of the key motivations for considering the designing of Hierarchical Cellular Networks (HCN). In HCN, calls blocked in a microcell flow over to an overlay macrocell. Microcells can be replaced by WLANs as this can provide high bandwidth and its users have limited mobility features. Efficient sharing of resources between wireless cellular networks and WLANs will improve the capacity as well as QoS metrics.
Wireless technologies continue to evolve to address the insatiable demand for faster response times, larger bandwidth, and reliable transmission. Yet as the industry moves toward the development of post 3G systems, engineers have consumed all the affordable physical layer technologies discovered to date. This has necessitated more intelligent and optimized utilization of available wireless resources. Wireless Communications Resource Managem ent, Lee, Park, and Seo cover all aspects of this critical topic, from the preliminary concepts and mathematical tools to detailed descriptions of all the resource management techniques. Readers will be able to more effectively leverage limited spectrum and maximize device battery power, as well as address channel loss, shadowing, and multipath fading phenomena. Presents the latest resource allocation techniques for new and next generation air interface technologies Arms readers with the necessary fundamentals and mathematical tools Illustrates theoretical concepts in a concrete manner Gives detailed coverage on scheduling, power management, and MIMO techniques Written by an author team working in both academia and industry Wireless Communications Resource Managementis geared for engineers in the wireless industry and graduate students specializing in wireless communications. Professionals in wireless service and device manufacturing industries will find the book to be a clear, up-to-date overview of the topic. Readers will benefit from a basic, undergraduate-level understanding of networks and communications. Course instructors can access lecture materials at the companion website:(www.wiley.com/go/bglee)