Download Free Resource Allocation With Carrier Aggregation In Cellular Networks Book in PDF and EPUB Free Download. You can read online Resource Allocation With Carrier Aggregation In Cellular Networks and write the review.

This book introduces an efficient resource management approach for future spectrum sharing systems. The book focuses on providing an optimal resource allocation framework based on carrier aggregation to allocate multiple carriers’ resources efficiently among mobile users. Furthermore, it provides an optimal traffic dependent pricing mechanism that could be used by network providers to charge mobile users for the allocated resources. The book provides different resource allocation with carrier aggregation solutions, for different spectrum sharing scenarios, and compares them. The provided solutions consider the diverse quality of experience requirement of multiple applications running on the user’s equipment since different applications require different application performance. In addition, the book addresses the resource allocation problem for spectrum sharing systems that require user discrimination when allocating the network resources.
This book focuses on AI and data-driven technical and management innovations in logistics, informatics and services. The respective papers analyze in detail the latest fundamental advances in the state of the art and practice of logistics, informatics, service operations and service science. The book gathers the outcomes of the "9th International Conference on Logistics, Informatics and Service Sciences," which was held at the University of Maryland, USA.
This book dives into radio resource allocation optimizations, a research area for wireless communications, in a pragmatic way and not only includes wireless channel conditions but also incorporates the channel in a simple and practical fashion via well-understood equations. Most importantly, the book presents a practical perspective by modeling channel conditions using terrain-aware propagation which narrows the gap between purely theoretical work and that of industry methods. The provided propagation modeling reflects industry grade scenarios for radio environment map and hence makes the channel based resource allocation presented in the book a field-grade view. Also, the book provides large scale simulations that account for realistic locations with terrain conditions that can produce realistic scenarios applicable in the field. Most portions of the book are accompanied with MATLAB code and occasionally MATLAB/Python/C code. The book is intended for graduate students, academics, researchers of resource allocation in mathematics, computer science, and electrical engineering departments as well as working professionals/engineers in wireless industry.
This book focuses on AI and data-driven technical and management innovations in logistics, informatics and services. The respective papers analyze in detail the latest fundamental advances in the state of the art and practice of logistics, informatics, service operations and service science. The book gathers the outcomes of the “9th International Conference on Logistics, Informatics and Service Sciences,” which was held at the University of Maryland, USA.
5G NR: The Next Generation Wireless Access Technology follows the authors' highly celebrated books on 3G and 4G by providing a new level of insight into 5G NR. After an initial discussion of the background to 5G, including requirements, spectrum aspects and the standardization timeline, all technology features of the first phase of NR are described in detail. Included is a detailed description of the NR physical-layer structure and higher-layer protocols, RF and spectrum aspects and co-existence and interworking with LTE. The book provides a good understanding of NR and the different NR technology components, giving insight into why a certain solution was selected. Content includes: - Key radio-related requirements of NR, design principles, technical features - Details of basic NR transmission structure, showing where it has been inherited from LTE and where it deviates from it, and the reasons why - NR Multi-antenna transmission functionality - Detailed description of the signals and functionality of the initial NR access, including signals for synchronization and system information, random access and paging - LTE/NR co-existence in the same spectrum, the benefits of their interworking as one system - The different aspects of mobility in NR RF requirements for NR will be described both for BS and UE, both for the legacy bands and for the new mm-wave bands - Gives a concise and accessible explanation of the underlying technology and standards for 5G NR radio-access technology - Provides detailed description of the NR physical-layer structure and higher-layer protocols, RF and spectrum aspects and co-existence and interworking with LTE - Gives insight not only into the details of the NR specification but also an understanding of why certain solutions look like they do
This book presents a mathematical treatment of the radio resource allocation of modern cellular communications systems in contested environments. It focuses on fulfilling the quality of service requirements of the living applications on the user devices, which leverage the cellular system, and with attention to elevating the users’ quality of experience. The authors also address the congestion of the spectrum by allowing sharing with the band incumbents while providing with a quality-of-service-minded resource allocation in the network. The content is of particular interest to telecommunications scheduler experts in industry, communications applications academia, and graduate students whose paramount research deals with resource allocation and quality of service.
This book introduces the impact of channel aggregation (CA) and channel fragmentation (CF) on traffic flows, through analytical models, computer simulations, and test-bed implementations. Its content includes the concept of CA and CF, the basic concept and calculation of Markov chains (MCs), the modeling process of the CA and CF enabled system via MCs, the process of simulations, and a test-bed study based on a software defined radio. This book can serve as a study guide for advanced-level students, who are interested in studying the impact of CA and CF techniques on traffic flows. This book would also interest communication engineers, who would like to learn MC modeling for performance evaluations, as it includes a step-by-step guidance for the modeling process via MCs, as well as its simulation approaches.
This book presents the design of delay-efficient packet schedulers for heterogeneous M2M uplink traffic classified into several classes, based on packet delay requirements, payload size, arrival process, etc. Specifically, the authors use tools from queuing theory to determine the delay-optimal scheduling policy. The proposed packet schedulers are designed for a generic M2M architecture and thus equally applicable to any M2M application. Additionally, due to their low implementation complexity and excellent delay-performance, they authors show how they are also well-suited for practical M2M systems. The book pertains primarily to real-time process scheduler experts in industry/academia and graduate students whose research deals with designing Quality-of-Service-aware packet schedulers for M2M packet schedulers over existing and future cellular infrastructure. Presents queuing theoretic analysis and optimization techniques used to design proposed packet scheduling strategies; Provides utility functions to precisely model diverse delay requirements, which lends itself to formulation of utility-maximization problems for determining the delay- or utility-optimal packet scheduler; Includes detail on low implementation complexity of the proposed scheduler by using iterative and distributed optimization techniques.
This book allows readers to gain an in-depth understanding of resource allocation problems in wireless networks and the techniques used to solve them.
The first and only up-to-date guide offering complete coverage of HetNets—written by top researchers and engineers in the field Small Cell Networks: Deployment, Management, and Optimization addresses key problems of the cellular network evolution towards HetNets. It focuses on the latest developments in heterogeneous and small cell networks, as well as their deployment, operation, and maintenance. It also covers the full spectrum of the topic, from academic, research, and business to the practice of HetNets in a coherent manner. Additionally, it provides complete and practical guidelines to vendors and operators interested in deploying small cells. The first comprehensive book written by well-known researchers and engineers from Nokia Bell Labs, Small Cell Networks begins with an introduction to the subject—offering chapters on capacity scaling and key requirements of future networks. It then moves on to sections on coverage and capacity optimization, and interference management. From there, the book covers mobility management, energy efficiency, and small cell deployment, ending with a section devoted to future trends and applications. The book also contains: The latest review of research outcomes on HetNets based on both theoretical analyses and network simulations Over 200 sources from 3GPP, the Small Cell Forum, journals and conference proceedings, and all prominent topics in HetNet An overview of indoor coverage techniques such as metrocells, picocells and femtocells, and their deployment and optimization Real case studies as well as innovative research results based on both simulation and measurements Detailed information on simulating heterogeneous networks as used in the examples throughout the book Given the importance of HetNets for future wireless communications, Small Cell Networks: Deployment, Management, and Optimization is sure to help decision makers as they consider the migration of services to HetNets. It will also appeal to anyone involved in information and communication technology.