Download Free Resonance Energy Transfer Within And To Optical Nanoparticles For Bioimaging And Biosensing Applications Book in PDF and EPUB Free Download. You can read online Resonance Energy Transfer Within And To Optical Nanoparticles For Bioimaging And Biosensing Applications and write the review.

Fluorescence-based biosensing and bioimaging play crucial roles in developing rapid and highly sensitive diagnostic tools for early detection of diseases and effective point-of-care medicine. However, these techniques require some optimisation to attain high-resolution images and very low detection limits. This thesis focuses on utilising luminescent nanoparticles and Resonance energy transfer mechanisms for advanced bioimaging and biosensing applications. I present the spectroscopic analyses of bright polymer encapsulated gold nanoclusters (AuNC-NPs) suitable for bioimaging in the shortwave infrared (SWIR) region. My study of the two photoluminescence lifetimes commonly measured in AuNCs allowed me to gather new insight to understand the origin of their luminescence. I discovered that each of these lifetimes are not sensitive in the same way to homo FRET suggesting that they originate from distinct mechanisms and distinct parts of the AuNCs such as the gold thiolate surface or the core of the nano-object. I have also characterised a new family of terbium complexes from CoraFluor (CRF) with several spectroscopic methods. I have found that they are a suitable energy transfer donor for FRET and NSET biosensing applications with gold nanoparticles. I attained sub-nanomolar limits of detection of quantum dots and have applied the system to detect the epidermal growth factor receptor (EGFR). This thesis describes the pivotal role of RET mechanisms, particularly FRET, in advancing fluorescence-based biosensing and bioimaging technologies. With innovative nanoparticle designs and strategic use of Corafluor Tb complexes, the study aims to enhance the bioimaging resolution in the SWIR region and improve diagnostic tool sensitivity, specificity and applicability, contributing to advancing precision medicine and disease management.
Sensing and Biosensing with Optically Active Nanomaterials summarizes the potential sensing applications of optically (chromogenic and fluorogenic) active, nano-sized, organic, and inorganic materials for the selective detection of ionic analytes (such as metal ions and anions) in various environmental and biological samples. Sections cover design, synthesis, sensing mechanisms and applications for detecting ionic analytes. Each chapter deals with the sensing applications of one kind of nanomaterial. This book is an important reference source for materials scientists and engineers seeking to increase their understanding on how nanomaterials are being used for sensing applications. Provides information on the various types of optically active inorganic and organic nanomaterials, including quantum dots, SPR active noble metal nanoparticles, metal nanoclusters, organic nanoparticles and carbon dots Summarizes the synthesis, design and development of sensors, along with their mechanisms Explains major sensing applications and manufacturing challenges
The technique of Förster resonance energy transfer (FRET) determines the separation between two molecules at the nanometer scale, where molecular interactions can take place. The phenomenon requires a donor fluorophore transferring its energy in a non-radiative way, through a near-field dipole-dipole interaction, to an acceptor. Nanophotonics achieves accurate control over these interactions by modifying the local density of optical states (LDOS) of a single quantum emitter. We have clearly demonstrated enhanced energy transfer within single FRET pairs confined in single nanoapertures made of gold and also aluminum or in more complex structures like the antenna-in-box design. In particular, we have revealed the strong influence of the mutual dipole orientation on the FRET enhancement using nanostructures. Also, by means of silver nanowires, we have demonstrated a long-range plasmon-mediated fluorescence energy transfer between two nanoparticles separated by micrometer distance. Our results are clearing a new path to improve the energy transfer process widely used in life sciences and biotechnology. Optical nanostructures open up many potential applications for biosensors, light sources or photovoltaics.
Nanobiosensors: Nanotechnology in the Agri-Food Industry, Volume 8, provides the latest information on the increasing demand for robust, rapid, inexpensive, and safe alternative technologies that monitor, test, and detect harmful or potentially dangerous foods. Due to their high sensitivity and selectivity, nanobiosensors have attracted attention for their use in monitoring not only biological contaminants in food, but also potential chemical and physical hazards. This book offers a broad overview regarding the current progress made in the field of nanosensors, including cutting-edge technological progress and the impact of these devices on the food industry. Special attention is given to the detection of microbial contaminants and harmful metabolotes, such as toxins and hormones, which have a great impact on both humans and animal health and feed. Includes the most up-to-date information on nanoparticles based biosensors and quantum dots for biological detection Provides application methods and techniques for research analysis for bacteriological detection and food testing Presents studies using analytical tools to improve food safety and quality analysis
Optical multiplexing based on nanoparticles provides many advantages for multiparameter biosensing and imaging. However, the changes in one parameter also lead to changing of other parameters, and thus, color, lifetime, or intensity could not be used as an independent parameter, respectively. This thesis can be divided into two aspects. The first one focuses on developing time-resolved single-nanoparticle multiplexing based on Förster resonance energy transfer (FRET) from lanthanide complexes to quantum dot (QD) to fluorescent dyes. Systematical investigation of all different combinations with a broad range of numbers of donors and acceptors on QD are presented, and the experimental results are compared with theoretical modelling. The result do not only contribute to a full understanding of such complicated multi donor-acceptor energy transfer pathways on nanoparticles but also open the opportunity to use the models for developing new strategies to achieve the QD with independent tunable color, lifetime and intensity. The second aspect focuses on the energy transfer mechanism from Tb to gold nanoparticle (AuNP). Nanosurface energy transfer (NSET) proved to be an operational mechanism in PL quenching by AuNPs, which is important information for the development, characterization, and application of nanobiosensors based on PL quenching by AuNPs.
Nanotechnology for Microelectronics and Photonics, Second Edition has been thoroughly revised, expanded, and updated. The aim of the book is to present the most recent advances in the field of nanomaterials, as well as the devices being developed for novel nanoelectronics and nanophotonic systems. It covers the many novel nanoscale applications in microelectronics and photonics that have been developed in recent years. Looking to the future, the book suggests what other applications are currently in development and may become feasible within the next few decades based on novel materials such as graphene, nanotubes, and organic semiconductors. In addition, the inclusion of new chapters and new sections to keep up with the latest developments in this rapidly-evolving field makes Nanotechnology for Microelectronics and Photonics, Second Edition an invaluable reference to research and industrial scientists looking for a guide on how nanostructured materials and nanoscale devices are used in microelectronics, optoelectronics, and photonics today and in future developments. Presents the fundamental scientific principles that explain the novel properties and applications of nanostructured materials in the quantum frontier Offers clear and concise coverage of how nanotechnology is currently used in the areas of microelectronics, optoelectronics, and photonics, as well as future proposed devices Includes nearly a hundred problems along with helpful hints and full solutions for more than half of them
Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the subject. Xueyuan Chen is a Professor at Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences. Yongsheng Liu is a Research Associate Professor at FJIRSM, Chinese Academy of Sciences. Datao Tu is a Research Assistant Professor at FJIRSM, Chinese Academy of Sciences.
Biomedical Imaging Instrumentation: Applications in Tissue, Cellular and Molecular Diagnostics provides foundational information about imaging modalities, reconstruction and processing, and their applications. The book provides insights into the fundamental of the important techniques in the biomedical imaging field and also discusses the various applications in the area of human health. Each chapter summarizes the overview of the technique, the various applications, and the challenges and recent innovations occurring to further improve the technique. Chapters include Biomedical Techniques in Cellular and Molecular Diagnostics, The Role of CT Scan in Medical and Dental Imaging, Ultrasonography - Technology & Applications in Clinical Radiology, Magnetic Resonance Imaging, Instrumentation and Utilization of PET-CT Scan in Oncology, Gamma Camera and SPECT, Sentinel of Breast Cancer Screening; Hyperspectral Imaging; PA Imaging; NIR Spectroscopy, and The Advances in Optical Microscopy and its Applications in Biomedical Research. This book is ideal for supporting learning, and is a key resource for students and early career researchers in fields such as medical imaging and biomedical instrumentation. A basic, fundamental, easy to understand introduction to medical imaging techniques Each technique is accompanied with detailed discussion on the application in the biomedical field in an accessible and easy to understand way Provides insights into the limitations of each technology and innovations that are occurring related to that technology
Performance of biosensing and bioimaging techniques can be improved by fluorescent nanoparticles (NPs) capable of efficient Förster resonance energy transfer (FRET). The aim of my PhD project is to develop bright and photostable dye-loaded polymer NPs capable to undergo efficient FRET beyond the Förster radius. We showed that bulky groups are essential for minimizing self-quenching and bleaching of encapsulated dyes. Moreover, polymer matrix plays a crucial role in controlling the inter-fluorophore communication by excitation energy transfer. Then, by exploiting communication of dyes, we designed NPs exhibiting efficient photoswitching as well as giant light-harvesting. Finally, very small NPs with efficient FRET to their surface were developed and applied for ultra-sensitive molecule detection of proteins. The obtained results provide new insights in the development of bright nanoparticles with efficient energy transfer as well as nano-probes for single-molecule detection.
This book provides a comprehensive overview of current achievements in biomedical applications of nanotechnology, including stem cell based regenerative medicine, medical imaging, cell targeting, drug delivery, and photothermal/photodynamic cancer therapy. New approaches in early cancer diagnosis and treatment are introduced with extensive experimental results. In particular, some novel materials have been synthesized with new properties that are most effective in cancer therapy. Some of the key issues are also addressed with these recent discoveries such as bio safety and bio degradability, that are essential in the success of nano medicine.An important aspect of this book is the introduction of nanotechnology to the medical communities that are searching for new treatments of cancer, therefore breaking barriers between the physical and medical sciences so that more MDs will be able to appreciate the new discoveries and establishments in medical diagnoses and therapies capable of tackling major clinical issues.