Download Free Resonance Absorption Of Neutrons In Nuclear Reactors Book in PDF and EPUB Free Download. You can read online Resonance Absorption Of Neutrons In Nuclear Reactors and write the review.

Reactor Design Physics, Volume 4: Resonance Absorption in Nuclear Reactors provides a systematic and detailed exposition of the theory of resonance absorption in nuclear reactors. This book is composed of eight chapters, and begins with a brief historical review of the subject. The second chapter deals with the resonance absorption in homogeneous media and with an alternative method of obtaining some of the formula, while the third chapter considers the natural and Doppler broadened fine shapes, as well as explicit formula for resonance absorption in homogeneous media. The succeeding chapters discuss some results of transport theory necessary for the study of the resonance absorption problem in heterogeneous media and the estimation of the errors introduced by the various simplifying assumptions. The final chapters examine the special topics of the Dancoff effect and the estimation of absorption in unresolved resonances. This book will prove useful to nuclear physicists and design engineers.
This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on the functioning, construction and operation of several different kinds of nuclear reactors are reported. Here, the main engineering problems are encountered and solved by employing simple and practical methods, which are described in detail. This seminal work mainly caters to students, teachers and researchers working in nuclear physics and engineering, but it is of invaluable interest to historians of physics too, since the material presented here is entirely novel.
This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi.In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on the functioning, construction and operation of several different kinds of nuclear reactors are reported. Here, the main engineering problems are encountered and solved by employing simple and practical methods, which are described in detail.This seminal work mainly caters to students, teachers and researchers working in nuclear physics and engineering, but it is of invaluable interest to historians of physics too, since the material presented here is entirely novel.
The Theory of Neutron Slowing Down in Nuclear Reactors focuses on one facet of nuclear reactor design: the slowing down (or moderation) of neutrons from the high energies with which they are born in fission to the energies at which they are ultimately absorbed. In conjunction with the study of neutron moderation, calculations of reactor criticality are presented. A mathematical description of the slowing-down process is given, with particular emphasis on the problems encountered in the design of thermal reactors. This volume is comprised of four chapters and begins by considering the problems of neutron moderation and their importance in all types of reactors. An asymptotic reactor model is described, and the calculation of the elastic scattering frequency is explained. Subsequent chapters focus on the process of slowing down in finite and infinite medium by analyzing capture by individual resonances; resonance integrals in heterogeneous systems; the slowing-down kernels; the spherical harmonics method; statistical methods; and small source theory. The final chapter presents numerical solutions of the Boltzmann equation and covers topics such as the multigroup approach, group constants, and solution of the multigroup equations. This book will be a useful resource for nuclear physicists and engineers.