Download Free Resilience And Stability Of Ecological And Social Systems Book in PDF and EPUB Free Download. You can read online Resilience And Stability Of Ecological And Social Systems and write the review.

It is usually the case that scientists examine either ecological systems or social systems, yet the need for an interdisciplinary approach to the problems of environmental management and sustainable development is becoming increasingly obvious. Developed under the auspices of the Beijer Institute in Stockholm, this new book analyses social and ecological linkages in selected ecosystems using an international and interdisciplinary case study approach. The chapters provide detailed information on a variety of management practices for dealing with environmental change. Taken as a whole, the book will contribute to the greater understanding of essential social responses to changes in ecosystems, including the generation, accumulation and transmission of ecological knowledge, structure and dynamics of institutions, and the cultural values underlying these responses. A set of new (or rediscovered) principles for sustainable ecosystem management is also presented. Linking Social and Ecological Systems will be of value to natural and social scientists interested in sustainability.
Environmental law envisions ecological systems as existing in an equilibrium state, reinforcing a rigid legal framework unable to absorb rapid environmental changes and innovations in sustainability. For the past four decades, "resilience theory," which embraces uncertainty and nonlinear dynamics in complex adaptive systems, has provided a robust, invaluable foundation for sound environmental management. Reforming American law to incorporate this knowledge is the key to sustainability. This volume features top legal and resilience scholars speaking on resilience theory and its legal applications to climate change, biodiversity, national parks, and water law.
This monograph, co-authored by three longtime collaborators, aims to promote the interdisciplinary field of mathematical biology by providing accessible new approaches to study natural systems. As there is currently scarce literature on the applications of mathematical modelling for biology research, this book presents a new way of studying interactions at the level of populations, societies, ecosystems, and biomes through open-sourced modeling platforms. It offers an interdisciplinary approach to analyzing natural phenomena—for example, by showing how master equations developed to describe electrical circuits can also describe biological systems mathematically. Ultimately it promotes a method of study based on modelling and mathematical principles, facilitating collaboration between mathematicians, biologists, engineers, and other researchers to enrich knowledge of the world’s ecosystems.
Engineering within Ecological Constraints presents a rare dialogue between engineers and environmental scientists as they consider the many technical as well as social and legal challenges of ecologically sensitive engineering. The volume looks at the concepts of scale, resilience, and chaos as they apply to the points where the ecological life support system of nature interacts with the technological life support system created by humankind. Among the questions addressed are: What are the implications of differences between ecological and engineering concepts of efficiency and stability? How can engineering solutions to immediate problems be made compatible with long-term ecological concerns? How can we transfer ecological principles to economic systems? The book also includes important case studies on such topics as water management in southern Florida and California and oil exploration in rain forests. From its conceptual discussions to the practical experience reflected in case studies, this volume will be important to policymakers, practitioners, researchers, educators, and students in the fields of engineering, environmental science, and environmental policy.
Increasingly, cracks are appearing in the capacity of communities, ecosystems, and landscapes to provide the goods and services that sustain our planet's well-being. The response from most quarters has been for "more of the same" that created the situation in the first place: more control, more intensification, and greater efficiency. "Resilience thinking" offers a different way of understanding the world and a new approach to managing resources. It embraces human and natural systems as complex entities continually adapting through cycles of change, and seeks to understand the qualities of a system that must be maintained or enhanced in order to achieve sustainability. It explains why greater efficiency by itself cannot solve resource problems and offers a constructive alternative that opens up options rather than closing them down. In Resilience Thinking, scientist Brian Walker and science writer David Salt present an accessible introduction to the emerging paradigm of resilience. The book arose out of appeals from colleagues in science and industry for a plainly written account of what resilience is all about and how a resilience approach differs from current practices. Rather than complicated theory, the book offers a conceptual overview along with five case studies of resilience thinking in the real world. It is an engaging and important work for anyone interested in managing risk in a complex world.
This book is open access under a CC BY-NC 2.5 license. This book provides an unprecedented synthesis of the current status of scientific and management knowledge regarding global rangelands and the major challenges that confront them. It has been organized around three major themes. The first summarizes the conceptual advances that have occurred in the rangeland profession. The second addresses the implications of these conceptual advances to management and policy. The third assesses several major challenges confronting global rangelands in the 21st century. This book will compliment applied range management textbooks by describing the conceptual foundation on which the rangeland profession is based. It has been written to be accessible to a broad audience, including ecosystem managers, educators, students and policy makers. The content is founded on the collective experience, knowledge and commitment of 80 authors who have worked in rangelands throughout the world. Their collective contributions indicate that a more comprehensive framework is necessary to address the complex challenges confronting global rangelands. Rangelands represent adaptive social-ecological systems, in which societal values, organizations and capacities are of equal importance to, and interact with, those of ecological processes. A more comprehensive framework for rangeland systems may enable management agencies, and educational, research and policy making organizations to more effectively assess complex problems and develop appropriate solutions.
Scientists and researchers concerned with the behavior of large ecosystems have focused in recent years on the concept of "resilience." Traditional perspectives held that ecological systems exist close to a steady state and resilience is the ability of the system to return rapidly to that state following perturbation. However beginning with the work of C. S. Holling in the early 1970s, researchers began to look at conditions far from the steady state where instabilities can cause a system to shift into an entirely different regime of behavior, and where resilience is measured by the magnitude of disturbance that can be absorbed before the system is restructured. Resilience and the Behavior of Large-Scale Systems examines theories of resilience and change, offering readers a thorough understanding of how the properties of ecological resilience and human adaptability interact in complex, regional-scale systems. The book addresses the theoretical concepts of resilience and stability in large-scale ecosystems as well as the empirical application of those concepts in a diverse set of cases. In addition, it discusses the practical implications of the new theoretical approaches and their role in the sustainability of human-modified ecosystems. The book begins with a review of key properties of complex adaptive systems that contribute to overall resilience, including multiple equlibria, complexity, self-organization at multiple scales, and order; it also presents a set of mathematical metaphors to describe and deepen the reader's understanding of the ideas being discussed. Following the introduction are case studies that explore the biophysical dimensions of resilience in both terrestrial and aquatic systems and evaluate the propositions presented in the introductory chapters. The book concludes with a synthesis section that revisits propositions in light of the case studies, while an appendix presents a detailed account of the relationship between return times for a disturbed system and its resilienc. In addition to the editors, contributors include Stephen R. Carpenter, Carl Folke, C. S. Holling, Bengt-Owe Jansson, Donald Ludwig, Ariel Lugo, Tim R. McClanahan, Garry D. Peterson, and Brian H. Walker.
Reducing environmental hazard and human impact on different ecosystems, with special emphasis on rural landscapes is the main topic of different environmental policies designed in developed countries and needed in most developing countries. This book covers the bioindication approach of rural landscapes and man managed ecosystems including both urbanised and industrialised ones. The main techniques and taxa used for bioindication are considered in detail. Remediation and contamination is faced with diversity, abundance and dominance of biota, mostly invertebrates. Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes provides a basic tool for students and scientists involved in landscape ecology and planning, environmental sciences, landscape remediation and pollution.
The capacity of a system an ecosystem or a social-ecological system to tolerate disturbance, without collapsing into a qualitatively different state controlled by a different set of processes, is known as resilience. Written by some of the leading international thinkers in the field, Exploring Resilience in Social-Ecological Systems provides a state-of-the-science account of resilience theory, based on comparisons of a set of case studies around the world, and gives some fascinating insights into the subject.
Advances in Ecological Research is one of the most successful series in the highly competitive field of ecology. Each volume publishes topical and important reviews, interpreting ecology as widely as in the past, to include all material that contributes to our understanding of the field. Topics in this invaluable series include the physiology, populations, and communities of plants and animals, as well as landscape and ecosystem ecology. - Presents the most updated information on the field of ecology, publishing topical and important reviews - Provides all information that relates to a thorough understanding of the field - Includes data on physiology, populations, and communities of plants and animals - New ideas on ES - Integrative approach working across a variety of levels of biological organization and spatial and temporal scales - Diversity of relevant subjects covered