Download Free Residues And Duality Book in PDF and EPUB Free Download. You can read online Residues And Duality and write the review.

"This book, which grew out of lectures by E. Kunz for students with a background in algebra and algebraic geometry, develops local and global duality theory in the special case of (possibly singular) algebraic varieties over algebraically closed base fields. It describes duality and residue theorems in terms of Kahler differential forms and their residues. The properties of residues are introduced via local cohomology. Special emphasis is given to the relation between residues to classical results of algebraic geometry and their generalizations." "The contribution by A. Dickenstein gives applications of residues and duality to polynomial solutions of constant coefficient partial differential equations and to problems in interpolation and ideal membership, D. A. Cox explains toric residues and relates them to the earlier text." "The book is intended as an introduction to more advanced treatments and further applications of the subject, to which numerous bibliographical hints are given."--BOOK JACKET.
Grothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory.
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Part One of this book covers the abstract foundations of Grothendieck duality theory for schemes in part with noetherian hypotheses and with some refinements for maps of finite tor-dimension. Part Two extends the theory to the context of diagrams of schemes.
A very primitive form of this monograph has existed for about two and a half years in the form of handwritten notes of a course that Alain Y ger gave at the University of Maryland. The objective, all along, has been to present a coherent picture of the almost mysterious role that analytic methods and, in particular, multidimensional residues, have recently played in obtaining effective estimates for problems in commutative algebra [71;5]* Our original interest in the subject rested on the fact that the study of many questions in harmonic analysis, like finding all distribution solutions (or finding out whether there are any) to a system of linear partial differential equa tions with constant coefficients (or, more generally, convolution equations) in ]R. n, can be translated into interpolation problems in spaces of entire functions with growth conditions. This idea, which one can trace back to Euler, is the basis of Ehrenpreis's Fundamental Principle for partial differential equations [37;5], [56;5], and has been explicitly stated, for convolution equations, in the work of Berenstein and Taylor [9;5] (we refer to the survey [8;5] for complete references. ) One important point in [9;5] was the use of the Jacobi interpo lation formula, but otherwise, the representation of solutions obtained in that paper were not explicit because of the use of a-methods to prove interpolation results.
Introduction M. Kodaira's vanishing theorem, saying that the inverse of an ample invert ible sheaf on a projective complex manifold X has no cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre's GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projective manifolds over a field k of characteristic p = 0, for a long time no algebraic proof was known and no generalization to p > 0, except for certain lower dimensional manifolds. Worse, counterexamples due to M. Raynaud [52J showed that in characteristic p > 0 some additional assumptions were needed. This was the state of the art until P. Deligne and 1. Illusie [12J proved the degeneration of the Hodge to de Rham spectral sequence for projective manifolds X defined over a field k of characteristic p > 0 and liftable to the second Witt vectors W2(k). Standard degeneration arguments allow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re sult which again could only be obtained by analytic and differential geometric methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.) gave an easy proof of Kodaira vanishing in all characteristics, provided that X lifts to W2(k).