Download Free Research Trends In Mathematics Teacher Education Book in PDF and EPUB Free Download. You can read online Research Trends In Mathematics Teacher Education and write the review.

Research on the preparation and continued development of mathematics teachers is becoming an increasingly important subset of mathematics education research. Such research explores the attributes, knowledge, skills and beliefs of mathematics teachers as well as methods for assessing and developing these critical aspects of teachers and influences on teaching. Research Trends in Mathematics Teacher Education focuses on three major themes in current mathematics teacher education research: mathematical knowledge for teaching, teacher beliefs and identities, and tools and techniques to support teacher learning. Through careful reports of individual research studies and cross-study syntheses of the state of research in these areas, the book provides insights into teachers’ learning processes and how these processes can be harnessed to develop effective teachers. Chapters investigate bedrock skills needed for working with primary and secondary learners (writing relevant problems, planning lessons, being attentive to student learning) and illustrate how knowledge can be accessed, assessed, and nurtured over the course of a teaching career. Commentaries provide context for current research while identifying areas deserving future study. Included among the topics: Teachers’ curricular knowledge Teachers’ personal and classroom mathematics Teachers’ learning journeys toward reasoning and sense-making Teachers’ transitions in noticing Teachers’ uses of a learning trajectory as a tool for mathematics lesson planning A unique and timely set of perspectives on the professional development of mathematics teachers at all stages of their careers, Research Trends in Mathematics Teacher Education brings clarity and practical advice to researchers as well as practitioners in this increasingly critical arena.
The audience remains much the same as for the 1992 Handbook, namely, mathematics education researchers and other scholars conducting work in mathematics education. This group includes college and university faculty, graduate students, investigators in research and development centers, and staff members at federal, state, and local agencies that conduct and use research within the discipline of mathematics. The intent of the authors of this volume is to provide useful perspectives as well as pertinent information for conducting investigations that are informed by previous work. The Handbook should also be a useful textbook for graduate research seminars. In addition to the audience mentioned above, the present Handbook contains chapters that should be relevant to four other groups: teacher educators, curriculum developers, state and national policy makers, and test developers and others involved with assessment. Taken as a whole, the chapters reflects the mathematics education research community's willingness to accept the challenge of helping the public understand what mathematics education research is all about and what the relevance of their research fi ndings might be for those outside their immediate community.
This book contains suggestions for and reflections on the teaching, learning and assessing of mathematical modelling and applications in a rapidly changing world, including teaching and learning environments. It addresses all levels of education from universities and technical colleges to secondary and primary schools. Sponsored by the International Community of Teachers of Mathematical Modelling and Applications (ICTMA), it reflects recent ideas and methods contributed by specialists from 30 countries in Africa, the Americas, Asia, Australia and Europe. Inspired by contributions to the Fourteenth Conference on the Teaching of Mathematical Modelling and Applications (ICTMA14) in Hamburg, 2009, the book describes the latest trends in the teaching and learning of mathematical modelling at school and university including teacher education. The broad and versatile range of topics will stress the international state-of-the-art on the following issues: Theoretical reflections on the teaching and learning of modelling Modelling competencies Cognitive perspectives on modelling Modelling examples for all educational levels Practice of modelling in school and at university level Practices in Engineering and Applications
This field-spanning book will set out the broad advances in knowledge which have accumulated in the 21st century through the sustained exchange of ideas and collaboration between mathematics education researchers, considering both european and global perspectives. It is split in to three main sections focusing on content domains and processes, aspects of mathematics teaching and learning, and linguistic and social perspectives, and concludes with two lively international discussion chapters. Each section will include coverage of recent developments, current status and future outlook of global research making this book a fascintaing compendium of state of the art mathematical knowledge.
"Didactics of mathematics has been recently considered, for less than a century, as scientific discipline as itself. The study of this discipline has significantly grown in the last decades since many authors have focused their efforts in the study of the relations of the knowledge and the processes of teaching-learning of mathematics. This book presents eight original contributions of authors from ten different universities, and even from different countries, related to (1) Learning and metacognition; (2) A methodology to teach mathematics; (3) A study related to mathematics in China; (4) Collaborative learning in Mathematics in Secondary Education; (5) Intervention to teach notable products in Secondary Education; (6) The use of holography in geometry teaching in Secondary Education; (7) Problem Based Learning in University for advanced mathematics teaching; (8) Flip teaching in University. This monograph is required reading for all researchers in mathematics education and contains different useful material for mathematics educators and teacher trainers interested in the theory and practice of mathematics education. As such this monograph is suitable to teachers of mathematics in different educational levels. Researchers, graduate students and seminars will find this book really helpful for their daily work. This book is also recommended to researchers in different disciplines, such as general education, didactics or general mathematics"--
This book focuses on issues related to mathematics teaching and learning resources, including mathematics textbooks, teacher guides, student learning and assessment materials, and online resources. The book highlights various theoretical and methodological approaches used to study teaching and learning resources, and addresses the areas of resources, teachers, and students at an international level. As for the resources, the book examines the role textbooks and other curricular or learning resources play in mathematics teaching, learning, and assessment. It asks questions such as: Could we consider different types of textbooks and roles they play in teaching and learning? How does the digitalization of information and communication affect these roles? What are defining features of e-textbooks, and how could we characterize the differences between the traditional textbooks and e-textbooks? As for the teachers, the book discusses the relationships between teachers’ individual and collective resources, and the way in which we could model such relationships. Specific questions addressed are: What is the role of teachers in developing textbooks and other teaching and learning materials? What are the relationships between resource designers and users? What are the consequences of these changing roles and relationships for the teaching of mathematics, and for teacher knowledge and professional development? As for the students, the book explores how students, as well as their teachers, interact through resources. It raises and addresses questions such as: What are the effects of modern ICT (particularly internet) on students’ use and the design of resources? How do changing patterns of use and design affect student behaviour, learning, and relationships to the subject of mathematics?
This open access book, inspired by the ICME 13 topic study group “Affect, beliefs and identity in mathematics education”, presents the latest trends in research in the area. Following an introduction and a survey chapter providing a concise overview of the state-of-art in the field of mathematics-related affect, the book is divided into three main sections: motivation and values, engagement, and identity in mathematics education. Each section comprises several independent chapters based on original research, as well as a reflective commentary by an expert in the area. Collectively, the chapters present a rich methodological spectrum, from narrative analysis to structural equation modelling. In the final chapter, the editors look ahead to future directions in the area of mathematics-education-related affect. It is a timely resource for all those interested in the interaction between affect and mathematics education.
Compilation of the research produced by the International Group for the Psychology of Mathematics Education (PME) since its creation in 1976. The first three sections summarize cognitively-oriented research on learning and teaching specific content areas, transversal areas, and based on technology-rich environments. The fourth section is devoted to the research on social, affective, cultural and cognitive aspects of mathematics education. The fifth section includes two chapters summarizing the PME research on teacher training and professional life of mathematics teachers.
This book explores new trends and developments in mathematics education research related to proof and proving, the implications of these trends and developments for theory and practice, and directions for future research. With contributions from researchers working in twelve different countries, the book brings also an international perspective to the discussion and debate of the state of the art in this important area. The book is organized around the following four themes, which reflect the breadth of issues addressed in the book: • Theme 1: Epistemological issues related to proof and proving; • Theme 2: Classroom-based issues related to proof and proving; • Theme 3: Cognitive and curricular issues related to proof and proving; and • Theme 4: Issues related to the use of examples in proof and proving. Under each theme there are four main chapters and a concluding chapter offering a commentary on the theme overall.
This book brings together a collection of research-based papers on current issues in early childhood mathematics education that were presented in the Topic Study Group 1 (TSG 1) at the 13th International Congress on Mathematical Education (ICME-13), held at the University of Hamburg in 2016. It will help readers understand a range of key issues that early childhood mathematics educators encounter today. Research on early childhood mathematics education has grown in recent years, due in part to the well-documented, positive relation between children’s early mathematical knowledge and their later mathematics learning, and to the considerable emphasis many countries are now placing on preschool education. The book addresses a number of central questions, including: What is mathematical structural development and how can we promote it in early childhood? How can multimodality and embodiment contribute to early mathematics learning and to acquiring a better understanding of young children’s mathematical development? How can children’s informal mathematics-related experiences affect instruction and children’s learning in different mathematics content areas? What is the role of tools, including technology and picture books, in supporting early mathematics learning? What are the challenges in early childhood mathematics education for teachers’ education and professional development?