Download Free Research Needs In Subsurface Science Book in PDF and EPUB Free Download. You can read online Research Needs In Subsurface Science and write the review.

Research Needs in Subsurface Science provides an overview of the subsurface contamination problems across the DOE complex and shows by examples from the six largest DOE sites (Hanford Site, Idaho Engineering and Environmental Laboratory, Nevada Test Site, Oak Ridge Reservation, Rocky Flats Environmental Technology Site, and Savannah River Site) how advances in scientific and engineering knowledge can improve the effectiveness of the cleanup effort. This report analyzes the current Environmental Management (EM) Science Program portfolio of subsurface research projects to assess the extent to which the program is focused on DOE's contamination problems. This analysis employs an organizing scheme that provides a direct linkage between basic research in the EM Science Program and applied technology development in DOE's Subsurface Contaminants Focus Area. Research Needs in Subsurface Science also reviews related research programs in other DOE offices and other federal agencies (see Chapter 4) to determine the extent to which they are focused on DOE's subsurface contamination problems. On the basis of these analyses, this report singles out the highly significant subsurface contamination knowledge gaps and research needs that the EM Science Program must address if the DOE cleanup program is to succeed.
Research Needs in Subsurface Science provides an overview of the subsurface contamination problems across the DOE complex and shows by examples from the six largest DOE sites (Hanford Site, Idaho Engineering and Environmental Laboratory, Nevada Test Site, Oak Ridge Reservation, Rocky Flats Environmental Technology Site, and Savannah River Site) how advances in scientific and engineering knowledge can improve the effectiveness of the cleanup effort. This report analyzes the current Environmental Management (EM) Science Program portfolio of subsurface research projects to assess the extent to which the program is focused on DOE's contamination problems. This analysis employs an organizing scheme that provides a direct linkage between basic research in the EM Science Program and applied technology development in DOE's Subsurface Contaminants Focus Area. Research Needs in Subsurface Science also reviews related research programs in other DOE offices and other federal agencies (see Chapter 4) to determine the extent to which they are focused on DOE's subsurface contamination problems. On the basis of these analyses, this report singles out the highly significant subsurface contamination knowledge gaps and research needs that the EM Science Program must address if the DOE cleanup program is to succeed.
The National Academies' National Research Council undertook this study in response to a request from the Under Secretary of Energy to provide strategic advice on how the Department of Energy could improve its Environmental Quality R&D portfolio. The committee recommends that DOE develop strategic goals and objectives for its EQ business line that explicitly incorporate a more comprehensive, long-term view of its EQ responsibilities. For example, these goals and objectives should emphasize long-term stewardship and the importance of limiting contamination and materials management problems, including the generation of wastes and contaminated media, in ongoing and future DOE operations.
The National Defense Authorization Act for fiscal year 2017 contained a request for a National Academies of Sciences, Engineering, and Medicine review and assessment of science and technology development efforts within the Department of Energy's Office of Environmental Management (DOE-EM). This technical report is the result of the review and presents findings and recommendations.
The Department of Energy's Office of Environmental Management (DOE) is responsible for the safe cleanup of sites used for nuclear weapons development and government-sponsored nuclear energy research. Low-level radioactive waste (LLW) is the most volumetrically significant waste stream generated by the DOE cleanup program. LLW is also generated through commercial activities such as nuclear power plant operations and medical treatments. The laws and regulations related to the disposal of LLW in the United States have evolved over time and across agencies and states, resulting in a complex regulatory structure. DOE asked the National Academies of Sciences, Engineering, and Medicine to organize a workshop to discuss approaches for the management and disposition of LLW. Participants explored the key physical, chemical, and radiological characteristics of low-level waste that govern its safe and secure management and disposal in aggregate and in individual waste streams, and how key characteristics of low level waste are incorporated into standards, orders, and regulations that govern the management and disposal of LLW in the United States and in other major waste-producing countries. This publication summarizes the presentations and discussions from the workshop.