Download Free Research In Physics And Astronomy Book in PDF and EPUB Free Download. You can read online Research In Physics And Astronomy and write the review.

In preparing the report, Astronomy and Astrophysics in the New Millenium , the AASC made use of a series of panel reports that address various aspects of ground- and space-based astronomy and astrophysics. These reports provide in-depth technical detail. Astronomy and Astrophysics in the New Millenium: An Overview summarizes the science goals and recommended initiatives in a short, richly illustrated, non-technical booklet.
The steering committee was specifically asked to (1) provide an overview of the current state of astronomy and astrophysics science, and technology research in support of that science, with connections to other scientific areas where appropriate; (2) identify the most compelling science challenges and frontiers in astronomy and astrophysics, which shall motivate the committee’s strategy for the future; (3) develop a comprehensive research strategy to advance the frontiers of astronomy and astrophysics for the period 2022-2032 that will include identifying, recommending, and ranking the highest-priority research activities; (4) utilize and recommend decision rules, where appropriate, that can accommodate significant but reasonable deviations in the projected budget or changes in urgency precipitated by new discoveries or unanticipated competitive activities; (5) assess the state of the profession, including workforce and demographic issues in the field, identify areas of concern and importance to the community, and where possible, provide specific, actionable, and practical recommendations to the agencies and community to address these areas. This report proposes a broad, integrated plan for space- and ground-based astronomy and astrophysics for the decade 2023-2032. It also lays the foundations for further advances in the following decade.
In the last century, astronomy, astrophysics, and cosmology have evolved from observational and theoretical pursuits into more experimental science, with many stellar and planetary processes recreated in physics laboratories and extensively studied. This book provides new research in the field of astrophysics. Chapter One provides a review of theoretical and experimental nuclear reaction and decay data for stellar and explosive nucleosynthesis, as well as modern computation tools and methods. Chapter Two provides a brief overview of the Chelyabinsk meteorite which fell over the region of Chelyabinsk city nearby Southern Ural Mountains (West Siberia) on the February 15, 2013. Chapter Three discusses the local entropy equilibrium condition of an ideal gas in a static gravitational field, and its applications to some topics in astrophysics.
From a star theoretical physicist, a journey into the world of particle physics and the cosmos—and a call for a more liberatory practice of science. Winner of the 2021 Los Angeles Times Book Prize in Science & Technology A Finalist for the 2022 PEN/E.O. Wilson Literary Science Writing Award A Smithsonian Magazine Best Science Book of 2021 A Symmetry Magazine Top 10 Physics Book of 2021 An Entropy Magazine Best Nonfiction Book of 2020-2021 A Publishers Weekly Best Nonfiction Book of the Year A Kirkus Reviews Best Nonfiction Book of 2021 A Booklist Top 10 Sci-Tech Book of the Year In The Disordered Cosmos, Dr. Chanda Prescod-Weinstein shares her love for physics, from the Standard Model of Particle Physics and what lies beyond it, to the physics of melanin in skin, to the latest theories of dark matter—along with a perspective informed by history, politics, and the wisdom of Star Trek. One of the leading physicists of her generation, Dr. Chanda Prescod-Weinstein is also one of fewer than one hundred Black American women to earn a PhD from a department of physics. Her vision of the cosmos is vibrant, buoyantly nontraditional, and grounded in Black and queer feminist lineages. Dr. Prescod-Weinstein urges us to recognize how science, like most fields, is rife with racism, misogyny, and other forms of oppression. She lays out a bold new approach to science and society, beginning with the belief that we all have a fundamental right to know and love the night sky. The Disordered Cosmos dreams into existence a world that allows everyone to experience and understand the wonders of the universe.
This book focuses on the most recent, relevant, comprehensive and significant aspects in the well-established multidisciplinary field Laboratory Astrophysics. It focuses on astrophysical environments, which include asteroids, comets, the interstellar medium, and circumstellar and circumplanetary regions. Its scope lies between physics and chemistry, since it explores physical properties of the gas, ice, and dust present in those systems, as well as chemical reactions occurring in the gas phase, the bare dust surface, or in the ice bulk and its surface. Each chapter provides the necessary mathematical background to understand the subject, followed by a case study of the corresponding system. The book provides adequate material to help interpret the observations, or the computer models of astrophysical environments. It introduces and describes the use of spectroscopic tools for laboratory astrophysics. This book is mainly addressed to PhD graduates working in this field or observers and modelers searching for information on ice and dust processes.
This book takes a reader on a tour of astronomical phenomena: from the vastness of the interstellar medium, to the formation and evolution of stars and planetary systems, through to white dwarfs, neutron stars, and black holes, the final objects of the stellar graveyard. At its heart, this book is a journey through the evolutionary history of the birth, life, and death of stars, but detours are also made to other related interesting topics. This highly accessible story of the observed contents of our Galaxy includes intuitive explanations, informative diagrams, and basic equations, as needed. It is an ideal guide for undergraduates with some physics and mathematics background who are studying astronomy and astrophysics. It is also accessible to interested laypeople, thanks to its limited equations. Key features: Includes coverage of some of the latest exciting research from the field, including star formation, exoplanets, and black holes Can be utilised as a stand-alone textbook for a one-term course or as a supplementary textbook for a more comprehensive course on astronomy and astrophysics Authored by a team respected for research, education, and outreach Shantanu Basu is an astrophysicist and a professor at The University of Western Ontario, Canada. He is known for research contributions on the formation of gravitationally-collapsed objects in the universe: stars, planets, brown dwarfs, and supermassive black holes. He is one of the originators of the migrating embryo scenario of episodic accretion onto young stars. He has been recognized for his teaching excellence and his contributions to the astronomical community include organizing many conferences and training schools. Pranav Sharma is an astronomer and science historian known for his work on the history of the Indian Space Program. He has curated the Space Museum at the B. M. Birla Science Centre (Hyderabad, India). He is in-charge of the history of Indo-French scientific partnership project supported by the Embassy of France in India. He is a national-award-winning science communicator and has extensively worked on the popularization of astronomy education in India.
"Neutrinos in Particle Physics, Astronomy and Cosmology" provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. This book is intended for researchers and graduate students in the fields of particle physics, particle astrophysics and cosmology. Dr. Zhizhong Xing is a professor at the Institute of High Energy Physics, Chinese Academy of Sciences, China; Dr. Shun Zhou is currently a postdoctoral fellow at the Max Planck Institute for Physics, Germany.
Driven by discoveries, and enabled by leaps in technology and imagination, our understanding of the universe has changed dramatically during the course of the last few decades. The fields of astronomy and astrophysics are making new connections to physics, chemistry, biology, and computer science. Based on a broad and comprehensive survey of scientific opportunities, infrastructure, and organization in a national and international context, New Worlds, New Horizons in Astronomy and Astrophysics outlines a plan for ground- and space- based astronomy and astrophysics for the decade of the 2010's. Realizing these scientific opportunities is contingent upon maintaining and strengthening the foundations of the research enterprise including technological development, theory, computation and data handling, laboratory experiments, and human resources. New Worlds, New Horizons in Astronomy and Astrophysics proposes enhancing innovative but moderate-cost programs in space and on the ground that will enable the community to respond rapidly and flexibly to new scientific discoveries. The book recommends beginning construction on survey telescopes in space and on the ground to investigate the nature of dark energy, as well as the next generation of large ground-based giant optical telescopes and a new class of space-based gravitational observatory to observe the merging of distant black holes and precisely test theories of gravity. New Worlds, New Horizons in Astronomy and Astrophysics recommends a balanced and executable program that will support research surrounding the most profound questions about the cosmos. The discoveries ahead will facilitate the search for habitable planets, shed light on dark energy and dark matter, and aid our understanding of the history of the universe and how the earliest stars and galaxies formed. The book is a useful resource for agencies supporting the field of astronomy and astrophysics, the Congressional committees with jurisdiction over those agencies, the scientific community, and the public.
Winner of the 2019 Phi Beta Kappa Award for Science "A valuable perspective on the most important problem of our time." —Adam Becker, NPR Light of the Stars tells the story of humanity’s coming of age as we realize we might not be alone in this universe. Astrophysicist Adam Frank traces the question of alien life from the ancient Greeks to modern thinkers, and he demonstrates that recognizing the possibility of its existence might be the key to save us from climate change. With clarity and conviction, Light of the Stars asks the consequential question: What can the likely presence of life on other planets tell us about our own fate?
Much of what we know about neutrinos is revealed by astronomical observations, and the same applies to the axion, a conjectured new particle that is a favored candidate for the main component of the dark matter of the universe.